Electronic Supplementary Information

Mussel-Inspired Polydopamine Chemistry to Modulate Template Synthesis of 1D Metal-Organic Framework Superstructures

Boxuan Yu,ac Gang Ye,*ab Zhen Zeng, a Lei Zhang, a Jing Chen,*ab and Shengqian Ma*c

aCollaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
bBeijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China
cDepartment of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, United States
Email: yegang@mail.tsinghua.edu.cn (G. Ye); jingxia@mail.tsinghua.edu.cn (J. Chen); sqma@usf.edu. (S. Ma)
Fig. S1. Schematic diagram of the PDA modification unit.
Fig. S2. Photograph of the contra-diffusion reaction setup for template synthesis of MOFs
Fig. S3. Coordination structure of (a) ZIF-8 and (b) HKUST-1. CIF files were obtained via the Crystallography Open Database.
Fig. S4. XRD patterns of conventional ZIF-8 crystal (black), ZIF-8 deposited PCTM (red) and isolated 1D ZIF-8 superstructures (blue).
Fig. S5. SEM images of (a) ZIF-8 and (b) HKUST-1 crystals by solution synthesis under the experimental conditions. An average size of 100 nm and 350 nm was estimated for ZIF-8 and HKUST-1 crystals, respectively.
Fig. S6. Photograph of fractured ZIF-8 composite membrane after 6 h contra-diffusion synthesis.
Fig. S7. SEM image of fractured 1D ZIF-8 superstructures.
Fig. S8. Section view SEM image of ZIF-8 deposited PCTM@PDA.
Fig. S9. Surfaces of PDA modified PCTM after contra-diffusion synthesis of ZIF-8: (a) the surface toward zinc solution, (b) the surface toward mM solution.
Fig. S10. TGA curves and DTG plots of ZIF-8 and ZIF-8@PDA nanotubes.
Fig. S11. XRD pattern and TEM image of ZIF-8@PDA nanotubes after heating treatment. The scale bar is 2 μm.
Fig. S12. XRD patterns of conventional HKUST-1 crystal (black), HKUST-1 deposited on PDA modified PCTM (red) and isolated 1D HKUST-1 nanotubes (blue).
Fig. S13. XRD patterns of conventional ZIF-67 crystal (black), ZIF-67 deposited on PDA modified PCTM (red) and isolated 1D ZIF-67 nanotubes (blue).
Fig. S14. XRD patterns of conventional ZIF-12 crystal (black), ZIF-12 deposited on PDA modified PCTM (red) and isolated 1D ZIF-12 nanotubes (blue).
Fig. S15. FTIR spectra of PDA modified PCTM (black), conventional HKUST-1 crystal (red), HKUST-1 deposited on PDA modified PCTM (blue) and isolated 1D HKUST-1 nanotubes (orange).
Fig. S16. FTIR spectra of PDA modified PCTM (black), conventional ZIF-67 crystal (red), ZIF-67 deposited on PDA modified PCTM (blue) and isolated 1D ZIF-67 nanotubes (orange).
Fig. S17. FTIR spectra of PDA modified PCTM (black), conventional ZIF-12 crystal (red), ZIF-12 deposited on PDA modified PCTM (blue) and isolated 1D ZIF-12 nanotubes (orange).
Fig. S18. Removal ratio of methylene blue in water by virgin and regenerated PCTM@PDA@ZIF-8 composite membranes in 3 cycles, concentration: 5 mg/L, flow rate: 3 mL/min, membrane area: 1.2 cm², temperature: 298 K.
Fig. S19. Surface (a) and section (b) view SEM images of regenerated PCTM@PDA@ZIF-8. Inset is ZIF-8@PDA nanotubes prepared from (b).
Fig. S20. XRD patterns of virgin (black) and regenerated (red) PCTM@PDA@ZIF-8 composite membranes.