Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Selective CO₂ Electroreduction over Oxide-Derived Gallium Catalyst

Chengcheng Yan,^{a, b,c} Long Lin,^{a, b,c} Dunfeng Gao,^{a,b} Guoxiong Wang,^{a,b*}and Xinhe Bao^{a,b*}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

^b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

^c University of Chinese Academy of Sciences, Beijing, 100039, China

* Corresponding authors. E-mail addresses: wanggx@dicp.ac.cn (G. Wang); xhbao@dicp.ac.cn (X. Bao)

Fig. S1. Cathodic current density at other potentials after first tested at -0.61 V vs. RHE on Gallia gel/C electrode.

Fig. S2 Stability test of Gallia gel/C at -0.71 V vs. RHE in CO₂-saturated 0.1 M

Fig. S3. (a) High-resolution Ga 3d XPS spectra of Gallia gel/C electrode after the CO_2RR measurements with activation at -0.61 V vs. RHE.

Fig. S4. Cathodic current plot for gallia gel electrode tested at -0.91 V vs. RHE with the same Ga loading with Gallia gel/C electrode.

Fig. S5. XRD patterns for γ Ga₂O₃/C and GaOOH/C and corresponding standard PDF documents.

Fig. S6. TEM images for γ Ga₂O₃/C at different resolutions, showing well-dispersion of γ Ga₂O₃ nanoparticles.

Fig. S7. Cathodic current density profiles for (a) gallia gel mixed with carbon electrode, (c) γ Ga₂O₃/C electrode and (e) GaOOH/C electrode for the initial test at - 0.91 V vs. RHE, insets show the variation of CO Faradaic efficiency during the corresponding electrolysis time; Corresponding I-t curves at other potentials after activation at -0.91 V vs. RHE for (b) gallia gel mixed with carbon electrode, (d) γ Ga₂O₃/C electrode and (f) GaOOH/C electrode.

Fig. S8. Ga 3d high-resolution XPS spectrum of γ Ga₂O₃/C electrode collected after CO₂RR measurements.

Fig. S9. SEM image and corresponding EDS Mappings for GaOOH/C.

Electrode	Potential(V)	Current density	f _{CO} %	f _{HCOO-} %	f _{H2} %	Electrolyte
	vs. Ag/AgCl	(mA cm ⁻²)				
Gallia gel/C this work	-1.52	10.7	65.0	0	35.0	0.1 M KHCO3
Gallia gel/C this work	-1.32	4.8	77.0	0	23.0	0.1 M KHCO ₃
Ga ¹	-1.64	5.0	23.2	0	79.0	0.1 M KHCO ₃
Ga ²	-1.60	4.5	5.9	0	91.0	0.1 M KHCO ₃
Si-doped Ga ₂ O ₃ ³	-1.80	< 1	0.7	88.9	9.3	3.0 M KCl

References

1. Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, *Electrochim. Acta*, 1994, 39, 1833-1839.

2. N. Hidetomo, I. Shoichiro, O. Yoshiyuki, I. Kazumoto, M. Masunobu and I. Kaname, *Bull. Chem. Soc. Jpn.*, 1990, 63, 2459-2462.

3. T. Sekimoto, M. Deguchi, S. Yotsuhashi, Y. Yamada, T. Masui, A. Kuramata and S. Yamakoshi, *Electrochem. Commun.*, 2014, 43, 95-97.