Supplementary information

for

Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayer of layered double hydroxides: performance, mechanism and toxicity evaluation

Hanxuan Zeng,^a Lin Deng,^{a,b,*} Zhou Shi,^a Jinming Luo,^b John Crittenden,^b

^a Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, PR China

^b Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, Georgia, 30332, United States

*Corresponding authors

E-mail address: lindeng@hnu.edu.cn (L. Deng)

Text S1. Materials and Reagents

Carbamazepine (CBZ, \geq 98.0%), Oxcarbazepine (OXC, \geq 98.0%), Atrazine (ATZ, \geq 99.0%), Bisphenol A (BPA, \geq 99.0%), and tetracycline (TC, \geq 98.0%), were supplied by Aladdin Industrial Co. (China). 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), methanol (MeOH, HPLC grade, \geq 99.9%) and acetonitrile (HPLC grade, \geq 99.9%) were purchased from Sigma–Aldrich Chemical Co. Ltd. (USA). Aluminum nitrate nonahydrate (Al(NO₃)₃·9H₂O), magnesium nitrate hexahydrate (Mg(NO₃)₂·6H₂O), cobalt chloride hexahydrate (CoCl₂·6H₂O), trisodium citrate dihydrate (Na₃C₆H₅O₇·5H₂O), potassium ferricyanide (K₃[Fe(CN)₆), PMS (2KHSO₅·KHSO₄·K₂SO₄), and tertiary butanol (TBA, \geq 98.0%) were obtained from Sinopharm Chemical Reagent Co. (China). All the chemicals and reagents were of at least analytical grade and used as received.

Fig. S1. Schematic Illustration for synthesis of PBA-LDH.

Text S2. The detailed test conditions.

1. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS)

The flow rate was set at 0.24 mL/min, being eluent A deionized water (containing 0.1% formic acid) and eluent B acetonitrile. The initial conditions of the elution gradient programmed were 90%A:10%B. From 5 to 30 min the eluent B was increased to 70%, held for 10 min and returned to initial conditions in 10 min. The injection volume of sample was set at 10 μ L.

Table S1. Chemical Formula and Detailed Information for HPLC Analyses.

		Mobile phase					Wave-
Compounds	Formula	ultrapure water	ultrapure with formic aci	water 0.1% d	Methanol	Acetonitrile	length
Carbamazepine	$C_{15}H_{12}N_2O$	40				60	286
Oxcarbazepine	$C_{15}H_{12}N_2O_2$	45			55		254
Atrazine	$C_8H_{14}ClN_5$	30			60	10	230
Bisphenol A	$C_{15}H_{16}O_2$	60				40	280
Tetracycline	$C_{22}H_{24}N_2O_8$		80			20	355

HPLC analytical condition

Fig. S2. XRD diffraction patterns of LDH and PBA.

Fig. S3. Dispersion of PBA and PBA-LDH in CBZ solution.

Fig. S4. Plots of $\ln(C/C_0)$ versus reaction time.

Fig. S5. PMS concentration variation in PBA-LDH activated PMS system.

Fig. S6. Metal ions leaching concentrations in CoFe₂O₄ and PBA-LDH activated PMS systems.

Fig. S7. XRD diffraction patterns of PBA-LDH before and after reaction.

Fig. S8. (a) illustration of pH_{PZC} of PBA-LDH, (b) Species distribution of PMS at different pH values.

Fig. S9. (a) ESR spectra using DMPO as a spin-trapping agent at different time intervals; (b) Effect of MeOH and TBA on CBZ degradation (PBA dose 0.2 g/L, PMS dose 0.5 mM, CBZ concentration 20 mg/L, DMPO dose 100 mM, pH 7.0).

	Со	Fe	Mg	Al	С	N	0
Before reaction	0.94	0.67	15.39	6.22	23.45	5.58	47.75
After reaction	0.95	0.68	14.82	7.35	22.06	5.52	48.62

Table S2. The chemical composition of PBA-LDH before and after reaction (%).

Fig. S10. High-resolution XPS spectra of (a) Mg 1s and (b) Al 2p before and after reaction.

		Binding	Relative ratio (%)		
Co 2p		energy (eV)	Before reaction	After reaction	
Colm	Co ³⁺	781.6	58%	58%	
Co 2p _{3/2}	Co ²⁺	783.5	42%	42%	
Co 2p _{1/2}	Co ³⁺	797.5	57%	50%	
	Co ²⁺	798.5	43%	50%	
Ea 2 m	Fe ²⁺	708.6	89%	80%	
Fe 2p _{3/2}	Fe ³⁺	715.3	11%	20%	
Ea 2 m	Fe ²⁺	721.5	92%	79%	
Fe 2p _{1/2}	Fe ³⁺	723.9	8%	21%	

Table S3. Peaks information of Co $2p_{3/2}$, Co $2p_{1/2}$, Fe $2p_{3/2}$ and Fe $2p_{1/2}$.

Product ID and structural formula	Retention time (min)	Proposed structure	Measured accurate m/z
$\begin{array}{c} A \\ C_{15}H_{12}N_{2}O_{2} \end{array}$	3.74		252.9000
$\begin{array}{c} B \\ C_{15}H_{12}N_{2}O_{2} \end{array}$	3.74		252.9000
$C \\ C_{15}H_{10}N_2O_2$	7.54		251.1000
D C ₁₄ H ₁₁ NO	7.54		210.2000
Е С ₁₄ Н ₁₁ N	3.74		193.1000
F C ₁₄ H ₁₁ NO	7.54	o L L	210.2000
G C ₁₃ H ₉ N	7.54		180.1000
$\begin{array}{c} H\\ C_{6}H_{12}O\end{array}$	6.96	HO	99.0000
I C ₇ H ₆ O ₃	6.96	ОН	137.0000

Table S4. Oxidative intermediates of CBZ degradation by PBA-LDH activated PMS system.

Fig. S11. Proposed pathways for CBZ degradation in PBA-LDH activated PMS system.

Table S5. Toxicity classification according to the Globally Harmonized System of Classificationand Labelling of Chemicals (GHS) (United Nations, 2011)

Toxicity range (mg/L)	Class	
$LC50/EC50/ChC \le 1$	Very toxic	
$1 \leq LC50/EC50/ChC \leq 10$	Toxic	
$10 < LC50/EC50/ChC \le 100$	Harmful	
LC50/EC50/ChC > 100	Not harmful	

Sample	рН	TOC (mg/L)	Ca (mmol/L)	K (mmol/L)	Mg (mmol/L)	Na (mmol/L)
Lake water	7.42	3.36	0.42	0.11	0.18	0.21
River water	7.83	4.27	0.91	0.07	0.34	0.35
Well water	6.67	0.63	0.05	0.02	0.03	0.01

Table S6. Basic characteristics of lake water, river water and well water.

Fig. S12. PBA-LDH activated PMS system in treating lake water, river water and well water.