Supporting Information

Side-chain-type Anion Exchange Membranes for Vanadium Flow Battery: Properties and Degradation Mechanism

Yi Xing,^{ab} Lei Liu,^b Chenyi Wang,^{a,*} Nanwen Li^{b,*}

^aJiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, school of Materials

Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China.

^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of

Sciences, Taiyuan, 030001, China.

*Corresponding author. E-mail:wangcy@cczu.edu.cn; linanwen@sxicc.ac.cn

Figure S1. ¹H NMR spectra of (a) CMPSf-1.4, (b) PSf-N₃-1.4 and (c) PSf-c-PTA-1.4 copolymers in CDCl₃, and (d) PSf-c-PTA-1.4 membrane after protonating in DMSO- d_6 and (e) corresponding ATR-IR spectrum.

Figure S2. ¹H NMR spectra of TEPA salt and PSf-c-QA-1.2 copolymer in the bromine from in DMSO-d6.

Figure S3. ¹H NMR spectra of (a) CMPSf-1.4 and (b) PSf-PTA-1.4 copolymer in CDCl₃.

Mambrana	PSf-PT	A-1.4	PSf-c-PTA-1.4		PSf-c-Q	QA-1.2
Memorane	Before	After	Before	After	Before	After
THF	_				_	
Acetone			—	_		
Chloroform	+		+	_		
DMF	+	+/	+	+/	+	+/
NMP	+	+/	+	+/	+/	+/
DMSO	+/	+	+/	+	+	+
H_2O				_	—	
	1 . 0		40.1 h			

Table S1. Solubility of membranes before and after protonation^a

^a The AEMs immersed in 0.5 M H_2SO_4 for 48 h; ^b +, soluble; —, insoluble; +/—, partially soluable.

Q	$\operatorname{IEC}_{\operatorname{W}}^{\operatorname{a}}$	WU ^b	WU ^c	SR ^b	SR ^c
Sample	$(meq g^{-1})$	(wt%)	(wt%)	(%)	(%)
PSf-PTA-1.2	1.81	28.4	22.5	9.5	9.1
PSf-PTA-1.4	2.01	54.3	38.8	17.2	10.0
PSf-PTA-1.6	2.18	71.4	40.7	26.3	13.1
PSf-c-PTA-1.2	1.56	48.6	33.3	10.1	9.8
PSf-c-PTA-1.4	1.70	76.7	55.1	20.5	12.2
PSf-c-PTA-1.6	1.83	89.6	58.1	26.7	15.3
PSf-c-QA-1.0	1.36	68.6	41.8	18.3	11.9
PSf-c-QA-1.2	1.51	106.7	59.3	36.3	18.7
PSf-c-QA-1.4	1.65	160.0	79.2	44.6	27.2
Nafion 115	0.89	17.2	12.1	6.6	4.5

Table S2. Water uptake and swelling ratio of the prepared AEMs at 20 °C

^a meq g⁻¹, AEMs in sulfate or hydrogen sulfate ion form, and calculated from ¹H NMR spectra. ^b wt%, measured in deionized water at 20 °C. ^c Measured in 0.5 M H₂SO₄ at 20 °C.

igure S4. Water uptake and swell ratio of membranes in (a) Water and (b) 0.5 M H_2SO_4 at 20 °C as a function of IEC.

Figure S5. ¹³C NMR spectra of AEMs before (black) and after (red) exposure to 1.5 $M \text{ VO}_2^+$ [V(V)] in 3 M H₂SO₄ at 40 °C for 30 days.

Figure S6. Cycling performance for VFBs assembled with the prepared AEMs and Nafion 115 at a current density of 120 mA/cm².

Figure S7. Images of AEMs after long-term charge-discharge cycles testing: (a) PSf-PTA-1.4, (b) PSf-c-PTA-1.4 and (c) PSf-c-QA-1.2.

Figure S8. ¹³C NMR spectra of pristine membranes (black), after 1.5 M $VO_2^+/3M$ H₂SO₄ at 40 °C for 30 days (red) and in situ VFB durability testing (blue).

	aatiana	IEC _W ^a	WU ^b	Area resistivity	Def	
sample	cations	$(meq g^{-1})$	(wt%)	$[\Omega \ cm^2]$	Kei.	
Nafion 115	sulfonate	0.89	32.1	0.95	1	
QAPPEK-5	trimethylammonium	1.64	24.7	0.88	2	
PyPPEKK-4	pyridinium	1.55	16.5	0.6	3	
VBC-co-St-co-HEA	trimethylammonium	1.18	40.2	1.9	4	
QADMPEK-3	trimethylammonium	1.75	18.8	0.49	5	
QBPPEK80	trimethylammonium	1.53	23.8	0.58	6	
CMPSF-72	imidazolium	1.51	3.3°	1.22	7	
CMPSF-0.9	4,4'-bipyridinium	1.54	11.9	0.18	8	
PSf-TA-1.4	triethylammonium	2.01	29.6	1.3	this work	
PSf-c-TA-1.4	triethylammonium	1.70	36.7	0.6	this work	
PSf-c-QA-1.2	tetraethylammonium	1.51	53.0	0.5	this work	

Table S3 Properties of reported AEMs for VFBs

^a Calculated from ¹H NMR spectra, meq g⁻¹. ^b Measured at room temperature in water, wt %. ^c Swelling, measured at room temperature in water, %.

Table 54 Mechanical Properties of AEMs at 20°C					
Sample	Tensile strength (MPa)		Elongation at break (%)		
	dry ^a	wet ^b	dry ^a	wet ^b	
PSf-PTA	41.6	33.0	12	23.4	
PSf-c-PTA	32.5	20.7	8.0	23.3	
PSf-c-QA	20.2	13.7	5.6	27.4	

Table S4 Mechanical Properties of AEMs at 20 °C

^{*a*}At 40% RH.^{*b*}At 95 % RH.

References

- 1. B. Jiang, L. Wu, L. Yu, X. Qiu and J. Xi, J. Membr. Sci., 2016, 510, 18-26.
- S. Zhang, C. Yin, D. Xing, D. Yang and X. Jian, J. Membr. Sci., 2010, 363, 243– 249.
- S. Zhang, B. Zhang, D. Xing and X. Jian, J. Mater. Chem. A, 2013, 1, 12246– 12254.
- S.-G. Park, N.-S. Kwak, C. W. Hwang, H.-M. Park, T. S. Hwang, J. Membr. Sci., 2012, 423–424, 429–437.
- B. Zhang, S. Zhang, Z. Weng, G. Wang, E. Zhang, P. Yu, X. Chen and X. Wang, J. Power Sources, 2016, 325, 801-807.
- S. Zhang, B. Zhang, G. Zhao and X. Jian, J. Mater. Chem. A, 2014, 2, 3083– 3091.
- Y. Zhao, M. Li, Z. Yuan, X. Li, H. Zhang and I. F. J. Vankelecom, *Adv. Funct. Mater.*, 2016, 26, 210–218.
- W. Xu, Y. Zhao, Z. Yuan, X. Li, H. Zhang and I. F. J. Vankelecom, *Adv. Funct. Mater.*, 2015, 25, 2583–2589.