Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Mesoporous Single-Crystalline MnO_x Nanofibers@Graphene for Ultra-High Rate and Long-Life Lithium-Ion Battery Anodes

Chenglong $Xu^{\dagger a}$, Zheng Liu^{$\dagger a$}, Tong Wei^{*a}, Lizhi Sheng^a, Longhai Zhang^a, Lan Chen^a, *Qihang Zhou*^a, Zimu Jiang^a, Lin Wang^{*b} and Zhuangjun Fan^{*a,b}

a. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
b. School of Material Science and Engineering, China University of Petroleum, Qingdao
266580, China
E-mail: weitong666@163.com; linwangsxh@hotmail.com; fanzhj666@163.com

† These authors contributed equally to this work.

Fig. S1. (a,b) SEM images of the as-prepared MnO_2 NFs. (c,d) TEM images of MnO_2 NFs. (e,f) The high resolution TEM (HRTEM) image and selected area diffraction (SAED) pattern of MnO_2 NFs.

Fig. S2. Polarized optical microscope (POM) image of micro-sized droplets of MnO₂ NFs/GO suspension.

Fig. S3. (a,b,c) TEM images of SCMnO₂@GO. (d,e) SEM images and (f) HRTEM image of PSCMnO_x@G.

Fig. S4. SEM images of MnO₂/GO at different magnifications.

Fig. S5. (a-c) SEM images of MnO_x/G at different magnifications. (d) XRD pattern of MnO_x/G .

Fig. S6. (a) XPS survey spectrum and (b) high-resolution C 1s XPS spectra of PSCMnO_x@G.
(c) High-resolution C 1s XPS spectra of SCMnO₂@GO. (d) FTIR spectra of PSCMnO_x@G, SCMnO₂@GO and GO.

Fig. S7. (a) Nitrogen adsorption and desorption isotherm and (b) pore-size distribution plot of pristine MnO₂.

Samples	Specific surface area m ² g ⁻¹	Micropore area m ² g ⁻¹	Mesopore area m ² g ⁻¹
Pristine MnO ₂	16.2	1.5	11.3
SCMnO2@GO	31.9	1.2	30.6
PSCMnO _x @G	58.8	8.5	50.3

Table S1. Specific surface area obtained from N₂ adsorption/desorption test.

Fig. S8. TGA curve of MnO@G. The SCMnO₂@GO was annealed at 800 °C under a hydrogen atmosphere for 2 h to obtain the MnO@G. The content of graphene in MnO@G is the same as in PSCMnO_x@G. The final product of MnO@G after annealing at 800 °C in air can be assigned to the tetragonal structure of Mn₃O₄ phase, indicating that the MnO was oxidized to Mn₃O₄. In theory, this oxidation process will give rise to a 7.5wt.% weight increase. Assuming that the total mass is 1 and the carbon content is x, then the MnO content is (1-x). As shown in the TGA curve, the weight loss can be calculated using the following formula: x-7.5 wt.%(1-x) = 36.63 wt.%. Thus, the carbon content x is equal to 41.05wt%.

Fig. S9. (a) Rate capabilities of $PSCMnO_x@G$ at the current densities from 0.1 to 10.0 A g⁻¹.

(b) The R_s of the PSCMnOx@G, MnOx/G and pristine MnO2 electrodes.

Manganaga avida hagad	Data parformance	Cycling porformance	
manganese oxide -based		[$m \Delta h g^{-1}$]	Ref.
materials			
GNS@MnO@N-C	873 (0.1 A g ⁻¹); 165 (2.0A g ⁻¹)	754 (0.1 A g ⁻¹ , 350 cycles)	[19]
α -Mn ₂ O ₃ nanocrystals	780 (0.1 A g ⁻¹); 425(3.2 A g ⁻¹)	780 (0.1A g ⁻¹ , 100 cycles)	[23]
Carbon NFs/MnO	1006 (0.1 A g ⁻¹); 409 (2.0 A g ⁻¹)	992 (0.2 A g ⁻¹ , 50 cycles)	[8]
MnCO ₃ /Mn ₃ O ₄ /RGO	$800 (0.1 \text{ A g}^{-1}); 150 (3.2 \text{ A g}^{-1})$	532 (1.0 A g ⁻¹ , 800 cycles)	[17]
MnO/C nanopeapods	845 (0.1 A g^{-1}); 320 (5.0 A g^{-1})	525 (2.0 A g ⁻¹ , 1000 cycles)	[25]
Coaxial MnO/N-C nanorods	828 (0.2 A g^{-1}); 372 (5.0 A g^{-1})	982 (0.5 A g ⁻¹ , 100 cycles)	[34]
MnO@Mn ₃ O ₄ /NPCF	660 (0.2 A g^{-1}); 280 (2.0 A g^{-1})	1500 (0.2 A g ⁻¹ , 270 cycles)	[14]
GO-MnO2-GO NRBs	$680 (0.1 \text{ A g}^{-1}); 280 (2.0 \text{ A g}^{-1})$	612 (0.4 A g ⁻¹ , 250 cycles)	[9]
MnO ₂ /RGO	964 (0.1 A g ⁻¹); 115 (10 A g ⁻¹)	1574 (1.0 A g ⁻¹ , 500 cycles)	[10]
MnO _x /SWCNT	866 (0.2 A g ⁻¹); 437 (0.8 A g ⁻¹)	850 (0.1 A g ⁻¹ , 36 cycles)	[28]
MnNCN	792 (0.1 A g ⁻¹); 320 (3.2 A g ⁻¹)	385 (5.0 A g ⁻¹ , 500 cycles)	[16]
MnO@N-C	1097 (0.1 A g^{-1}); 438 (2.0 A g^{-1})	690 (1.0 A g ⁻¹ , 150 cycles)	[15]
MnO@CF	895 (0.2 A g^{-1}); 513 (4.0 A g^{-1})	1040 (0.2 A g ⁻¹ , 500 cycles)	[42]
G/MnO-800	1000 (0.1 A g ⁻¹); 270 (8.0 A g ⁻¹)	620 (1.0 A g ⁻¹ , 600 cycles)	[29]
MnO@C CSNWs	880 (0.1 A g ⁻¹); 356 (5.0 A g ⁻¹)	750 (1.0 A g ⁻¹ , 200 cycles)	[18]
Mn ₃ O ₄ /N-C fiber	1058 (0.05 A g ⁻¹); 320 (2.5 A g ⁻¹)	1007 (0.1 A g ⁻¹ , 160 cycles)	[26]
MnO nanowires/graphene	780 (0.05 A g ⁻¹); 300 (1.0 A g ⁻¹)	930 (0.5 A g ⁻¹ , 500 cycles)	[33]
PSCMnO _x @G	1072 (0.1 A g ⁻¹); 420 (10 A g ⁻¹)	1163 (2.0 A g ⁻¹ , 500 cycles)	This work

Table S2. Comparison of the electrochemical performance of $PSCMnO_x@G$ with previously
reported MnO_x based electrodes.

Fig. S10. Differential capacities (dQ/dV) versus voltage plots of pristine MnO_2 for different

cycles at 2.0 A g⁻¹.

Fig. S11. Nyquist impendence plots of (a) $PSCMnO_x@G$, (b) MnO_x/G and (c) pristine MnO_2 for different cycles at 2.0 A g⁻¹. (d) R_{ct} of $PSCMnO_x@G$, MnO_x/G and pristine MnO_2 for different cycles at 2.0 A g⁻¹.

Fig. S12. SEM images of (a) the PSCMnO_x@G and (b) MnO_2 nanofibers after 500 cycles at

2.0 A g⁻¹.