Supporting Information

Optical and electronic anisotropies in perovskitoid crystals of
Cs$_3$Bi$_2$I$_9$, studies of nuclear radiation detection

Qihao Sun,a,b Yadong Xu,*a,b,c Hongjian Zhang,b Bao Xiao,b Xin Liu,b Jiangpeng Dong,b Yuanbo Cheng,b Binbin Zhang,a,b Wanqi Jie,a,b and Mercouri G. Kanatzidis,*c,d

aState Key Laboratory of Solidification Processing and bKey Laboratory of Radiation Detection Materials and Devices, Northwestern Polytechnical University, Xi’an 710072, China, cDepartment of Chemistry, Northwestern University, Evanston, IL 60208, USA dMaterials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

Corresponding Author:

* Tel:+86-29-88460445;

e-mail address:
xyd220@nwpu.edu.cn (Y. Xu).
m-kanatzidis@northwestern.edu
EDS Measurements

Table. SI1 EDS analysis of Cs\textsubscript{3}Bi\textsubscript{2}I\textsubscript{9}.

<table>
<thead>
<tr>
<th>Element</th>
<th>Theoretical atomic percentage (%)</th>
<th>The actual atomic percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>64.29</td>
<td>64.88</td>
</tr>
<tr>
<td>Cs</td>
<td>21.43</td>
<td>20.14</td>
</tr>
<tr>
<td>Bi</td>
<td>14.28</td>
<td>14.98</td>
</tr>
<tr>
<td>Total:</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fig. SI1 The test spectrum results of EDS of Cs\textsubscript{3}Bi\textsubscript{2}I\textsubscript{9}.

Electric Measurements

Fig. SI2 Typical photoresponse contrast of CBI\textsubscript{(100)}, CBI\textsubscript{(101)} and CBI\textsubscript{(001)} at 150 V in 425nm LED (~200 mW·cm-2).
Radiation detection Characterization

Fig. S13 (a), (b) and (c) are the response spectra to 241Am alpha source of CBI(001), CBI(101) and CBI(100), respectively. (d), (e) and (f) $\mu\tau$ of CBI(001), CBI(101) and CBI(100) were 7.06×10^{-6} cm2·V$^{-1}$, 3.90×10^{-5} cm2·V$^{-1}$ and 5.88×10^{-5} cm2·V$^{-1}$ fitted by the single carrier Hecht equation, respectively.

Fig. S14 (a), (b) and (c) Alpha particles induced pulse shapes of CBI(001), CBI(101) and CBI(100) under various bias, respectively. (d), (e) and (f) The electron mobilities of CBI(001), CBI(101) and CBI(100) by the linear fitting, respectively.