Supporting Information

A railway-like network electrode design for room temperature Na-S battery

Tingting Yang,a Wei Gao,a Bingshu Guo,a Renming Zhan,a Qiuju Xu,a Hong He,a Shujuan Bao,a Xiaoyan Li,b Yuming Chen,c* and Maowen Xu**

aInstitute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.
bDepartment of Applied Physics and Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
cDepartment of Nuclear Science and Engineering, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
*Corresponding author:
E-mail: xumaowen@swu.edu.cn; yumingc@mit.edu.
Supplementary Figures

Fig. S1. Formation mechanism of S@CNT/NPC composite.

Fig. S2. FESEM images of ZIF-8 (a) and NPC (b).
Fig. S3. FESEM images (a-b) of CNT/ZIF-8.

Fig. S4. FESEM images (a-c) of CNT/ZIF-8 with different content of CNTs.
Fig. S5. Thermogravimetric analysis (TGA) under oxygen atmosphere.

Fig. S6. XRD patterns of the ZIF-8, NPC and S@NPC composite.
Fig. S7. FESEM elemental mapping images of C (b), S (c), and N (d) of S@CNT/NPC composite.

Fig. S8. Raman spectrum patterns of pure S.
Fig. S9. Thermogravimetric analysis (TGA) of S@CNT/NPC composite and S under nitrogen atmosphere.

Fig. S10. XPS survey spectrum of CNT/NPC composite.
Fig. S11. XPS results of survey (a) and N 1s spectrum (b) of S@CNT/NPC composite after cycling.

Fig. S12. N$_2$ adsorption-desorption isotherms and the pore size distributions (a,b) of CNT/ZIF-8.
Fig. S13. \(\text{N}_2 \) adsorption-desorption isotherms and the pore size distributions (a,b) of NPC.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>BET area (m(^2) g(^{-1}))</th>
<th>Pore volume (cm(^3) g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT/ZIF-8</td>
<td>959</td>
<td>0.487</td>
</tr>
<tr>
<td>CNT/NPC</td>
<td>2480</td>
<td>1.011</td>
</tr>
<tr>
<td>S@CNT/NPC</td>
<td>20</td>
<td>0.101</td>
</tr>
</tbody>
</table>

Fig. S14. Comparison of BET performance between CNT/ZIF-8, CNT/NPC and S@CNT/NPC composite.
Fig. S15. (a) Thermogravimetric analysis (TGA) and (b) Discharge–charge curves at 0.5C of S@CNT/NPC composite electrode with 43% sulfur.

Fig. S16. Nyquist plots of the S@CNT/NPC composite electrodes before and after cycling.
Fig. S17. Discharge-charge cycling performance of CNT/NPC composite electrode at 0.5C.

Fig. S18. TGA curve of the S@NPC composite under N₂ atmosphere (a), CV curves of the S@NPC composite (b).
Fig. S19. FESEM images of S@CNT/NPC after cycles.

Fig. S20. Comparison of decay rate per cycle for S@CNT/NPC composite with references.