Supporting Information

One-Pot Synthesis of Fe/N/S-Doped Porous Carbon Nanotubes for Efficient Oxygen Reduction Reaction

Zhong Tan,^{a,b} Huanxin Li,^{a,b} Qiaoxia Feng,^{a,b} Lanlan Jiang,^{a,b} Hongyu Pan,^{a,b} Zhongyuan Huang,^{a,b*} Qiang Zhou,^{a,b} Haihui Zhou,^{a,b*} Shuai Ma,^{a,b} Yafei Kuang^{a,b*}

^a State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China

^b College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China

*Corresponding Authors: zhongyuan.222@163.com; haihuizh@163.com and yafeik@163.com.

Figure S1 SEM images of (a) MO-FeCl₃ template and (b) Fe-MO-PPy NT.

Figure S2 (a, b) SEM images and (c, d) TEM images with different magnifications of Fe/N/S-CNT.

Figure S3 High-magnification TEM image of Fe/N/S-PCNT.

Figure S4 XRD pattern of Fe/N/S-PCNT before acid etching.

Figure S5 XPS surveys of Fe/N/S-PCNT and Fe/N/S-CNT.

Table S1	The contents	of d	lifferent	elements	measured	by	XPS.
						~	

Sample	C (at %)	N (at %)	S (at%)	O (at %)	Fe (at %)
Fe/N/S-PCNT	87.59	5.77	0.56	5.72	0.36
Fe/N/S-CNT	87.8	7.46	0.45	3.97	0.32

Table S2 Surface area and pore volume parameters of Fe/N/S-PCNT and Fe/N/S-CNT samples.

Sample	S _{BET}	Smicropore	S _{mesopore}	V _{total}	V _{micropore}	V _{mesopore}
	(m ² g ⁻¹)	$(m^2 g^{-1})$	$(m^2 g^{-1})$	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)	$(cm^3 g^{-1})$
Fe/N/S-PCNT	1152	906.6	245.4	0.646	0.440	0.206
Fe/N/S-CNT	304.6	253.3	50.7	0.234	0.119	0.115

Figure S6 LSV curves of various Fe/N/S-PCNT obtained by pyrolysis at 700 °C, 800 °C and 900 °C in O₂-saturated 0.1 M KOH at a rotation speed of 1600 rpm.

In order to optimize the pyrolysis temperature, Fe/N/S-PCNT catalysts calcined at different temperatures were prepared and their ORR performance were evaluated by LSV test. As shown in Figure S6. The Fe/N/S-PCNT obtained at 800 °C exhibited the best ORR catalytic performance with an optimized onset potential and half-wave potential. Therefore, 800 °C is considered to be the optimum pyrolysis temperature.

Figure S7 LSV curves of Fe/N/S-CNT at various rotation rates and (inset) the corresponding K-L plots at different potentials in (a) O₂-saturated 0.1 M KOH and (b) O₂-saturated 0.5 M H₂SO₄.

Figure S8 CV curves at various scan rates of (a) Fe/N/S-PCNT and (b) Fe/N/S-CN in the range of 1.02-1.12 V vs. Ag/AgCl. (c)Average variance between the anodic and cathodic currents $((\Delta J = J_a - J_c)/2)$ at 0.107 V against the scan rate for Fe/N/S-PCNT and Fe/N/S-CNT. The linear slope is equivalent to the double-layer capacitance, C_{dl} , was used to represent the electrochemical active surface area.

Catalyst	Electrolyte	E _{onset} (V vs RHE)	E _{1/2} (V vs RHE)	Reference	
Ea/NI/S DONT	0.1 M KOH	0.96	0.84	This work	
Fe/IN/S-PCINI	$0.5 \text{ M H}_2 \text{SO}_4$	0.80	0.62	- This work	
	0.1 M KOH	1.03	0.84	ACS Nano 2018, 12,	
Fe-N-DSC	$0.5 \text{ M H}_2 \text{SO}_4$	0.81	0.65	208–216	
S, N-Fe/N/C-CNT	0.1 M KOH	-	0.85	Angew. Chem. Int. Ed. 2017, 56, 610 –614	
Ea N. CNT	0.1 M KOH	0.85	0.73	ACS Appl. Mater.	
Fe-N-CN I	0.1 M HClO ₄	0.77	0.46	24256–24264	
Fe-M-LA/C-700	0.1 M KOH	0.93	-	J. Mater. Chem. A, 2017, 5, 19790–19799	
Fe-N-C	0.1 M KOH	0.92	0.81	J. Am. Chem. Soc. 2014,	
	0.1 M HClO ₄	0.80	0.60	136 (31), 11027-11033	
Co, N-CNF	0.1 M KOH	0.88	0.81	Adv.Mater.2016,28,1668 - 1674	
Co-N-mC	0.1 MKOH	0.94	0.85	Small,2017, 2017, 13, 1602507	
Co-N-B-CSs	0.1 M KOH	0.89	0.81	ACS Nano 2018, 12, 1894-1901	
S E ₂ /N/C	0.1 M KOH	0.91	0.84	ACS Appl. Mater.	
S-Fe/N/C	0.1 M HClO ₄	0.83	0.66	19379-19385	
Fe ₃ C@N-CNT	0.1 M KOH	0.97	0.85	Energy Environ. Sci., 2016, 9, 30923096	
	0.1 M KOH	0.94	0.83	ACS Nano 2016, 10,	
Fe-N-UU	0.5 M H ₂ SO ₄	0.80	0.52	5922-5932	

Table S3 Comparison of reported ORR performances for non-noble metal catalysts