Supporting Information

Controllable Nitrogen-Doping of Nanoporous Carbons Enabled by Coordination Frameworks

Wei Zhanga\textdagger, Saiyu Bua\textdagger, Qinghong Yuana*, Qiang Xub, Ming Hua*

\textbf{Figure S1.} Illustration of pyrrolic-N, pyridinic-N and graphitic-N structures adsorbed by different K atoms. u means that K atoms are adsorbed above the structure, d means that K atoms are adsorbed below the structure. We defined the differential binding energy as $E_{\text{diff}}^{\text{bind}} = E_{nK/sub} - E_{(n-1)K/sub} - E_K$. Where, n is the number of K atoms, $E_{nK/sub}$ is the total energy of the N-doped carbon structure with adsorbed n K atoms, $E_{(n-1)K/sub}$ is the total energy of the N-doped carbon structure with adsorbed n-1 K atoms, and E_K is the energy of a K atom in the bulk K.
Figure S2. Illustration of pyrrolic-N, pyridinic-N and graphitic-N structures at different N concentrations. (atomic ratio) (a) pyrrolic-N: 1.05%, 4.35% and 10.34%; (b) pyridinic-N: 4.23%, 9.68% and 17.65%; (c) graphitic-N: 1.39%, 2.78% and 4.17%; (d) Formation energies of different N doping structures.
Figure S3. The population probability of pyrrolic-N, pyridinic-N and graphitic-N with different nitrogen concentration versus to the increase of temperature.
Figure S4. PXRD pattern of the as-synthesized ZIF-8 particles.
Figure S5. SEM image of the as-synthesized ZIF-8 particles.
Figure S6. (a) N\textsubscript{2} adsorption-desorption isotherms and (b) the pore size distribution of ZIF-8 precursor.
Figure S7. SEM images of the samples obtained by annealing the ZIF-8 particles at various temperatures.
Figure S8. Raman spectra of (a) ZIF-8_{700}, (b) ZIF-8_{800}, (c) ZIF-8_{900} and (d) ZIF-8_{1000}.

The spectra were fitted based on the literature.2
Figure S9. The N/C ratios of all the nanoporous carbons obtained at annealing temperature of 600 to 1000 °C.
Figure S10. Elemental mapping of the carbonized sample (ZIF-8_{800}).
Figure S11. N1s spectra of the sample obtained by annealing the ZIF-8 particles at 700 °C for 12 h.
Figure S12. C1s spectra of the samples obtained by annealing the ZIF-8 particles at various temperatures.
Figure S13. Cycling performance of ZIF-8 carbonized under temperatures ranging from 600 °C to 1000 °C with a current of 30 mA g⁻¹.
Figure S14. Rate performance of the ZIF-8 carbonized under various temperatures ranging from 600 °C to 1000 °C with various current density from 50 to 2000 mA g⁻¹.
Figure S15. PXRD pattern of the hard carbon.
Figure S16. (a) N₂ adsorption-desorption isotherms and (b) the pore size distribution of ZIF-8₈₀₀ and hard carbon.
<table>
<thead>
<tr>
<th>Materials</th>
<th>Capacity Retention (mAh g(^{-1}))</th>
<th>Remaining capacity (cycles)</th>
<th>Current Density (mA g(^{-1}))</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIF-8(_{800})</td>
<td>220</td>
<td>100% (100)</td>
<td>100</td>
<td>This work</td>
</tr>
<tr>
<td>Graphite</td>
<td>97</td>
<td>51% (50)</td>
<td>139</td>
<td>Ref. S3</td>
</tr>
<tr>
<td>Soft carbon</td>
<td>162</td>
<td>81% (50)</td>
<td>558</td>
<td>Ref. S3</td>
</tr>
<tr>
<td>Hard carbon</td>
<td>216</td>
<td>83% (100)</td>
<td>28</td>
<td>Ref. S4</td>
</tr>
<tr>
<td>N-graphene</td>
<td>210</td>
<td>78% (100)</td>
<td>100</td>
<td>Ref. S5</td>
</tr>
<tr>
<td>Polyananocrystalline Graphite</td>
<td>75</td>
<td>50% (300)</td>
<td>100</td>
<td>Ref. S6</td>
</tr>
<tr>
<td>HCNT</td>
<td>232</td>
<td>100% (50)</td>
<td>100</td>
<td>Ref. S7</td>
</tr>
<tr>
<td>Mesoporous Carbon</td>
<td>198</td>
<td>90% (200)</td>
<td>200</td>
<td>Ref. S8</td>
</tr>
<tr>
<td>HCS-SC</td>
<td>186</td>
<td>90% (200)</td>
<td>279</td>
<td>Ref. S9</td>
</tr>
</tbody>
</table>
REFERENCES