Supporting Information for

Ultrahigh Energy Density Asymmetric Electrochemical Capacitors Based on Flower-like ZnO/Co₃O₄ Nanobundles and Stereotaxically Constricted Graphene

Ning Hu, Wen Hao Gong, Lei Huang, Pei Kang Shen*

Collaborative Innovation Center of Sustainable Energy Materials, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University; State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi Unversity, Nanning, 100 Daxue Road 530004, PR China.

*E-mail : pkshen@gxu.edu.cn

Fig.S1 EDS spectrum of (a) ZnO/Co₃O₄ NBs-1 (b) ZnO/Co₃O₄ NBs-2(c) ZnO/Co₃O₄ NBs-3

Fig.S2 (a1-a3)SEM and TEM images of ZnO/Co₃O₄ NBs-2 (b1-b3) SEM and TEM images of ZnO/Co₃O₄ NBs-3

Fig.S3 (a-b) The SEM of Co₃O₄ electrode

Fig.S4 (a-c) The CV curves of ZnO/Co_3O_4 NBs-2, ZnO/Co_3O_4 NBs-3 and Co_3O_4 electrode at different scan rate. (c-d) The GCD curves of ZnO/Co_3O_4 NBs-2, ZnO/Co_3O_4 NBs-3 and Co_3O_4 electrode at various current density.

Fig.S5 (a-b)SEM images and XRD pattern of SCG negative.

Fig.S6 (a-b)The GCD and specific capacitance of stereotaxically constricted graphene (SCG) as negative electrode

Fig.S7 (a-b) The SEM of ZnO/Co₃O₄ NBs-1 after 5000 cycles

Samples	m _{ZnO} (wt%)	m _{Co3O4} (wt%)
ZnO/Co ₃ O ₄ -NAs-1	73.03	26.97
ZnO/Co ₃ O ₄ -NAs-2	51.48	48.52
ZnO/Co ₃ O ₄ -NAs-3	37.32	62.68

Table.S1 The component content (wt%) of ZnO/Co₃O₄ compositions samples by EDS.

Table.S2 The specific capacitance of ZnO/Co_3O_4 -NBs-1 electrode compared with Zn-based and Co-based metal oxides for supercapacitors reported in previous literatures.

Electrode materials	Electrolyte	Potential window	Current density	Capacitance	Referenc
					e
NiO/ZnO hollow spheres	ЗМ КОН	0-0.55V	1.3A/g	497 F/g	1
Porous ZnCo ₂ O ₄ rodlikes	6М КОН	0-0.6V	1 A/g	604 F/g	2
ZnO@MnO ₂ nanofibers	1M Na ₂ SO ₄	0-1V	0.6 A/g	907 F/g	3
ZnO@C@NiO	ЗМ КОН	0-0.65V	1.43 A/g	677C/g	4
Co ₃ O ₄ @NiCo ₂ O ₄	2M KOH	0-0.4V	1 A/g	1450 F/g	5
Co ₃ O ₄ @Au@CuO nanowires	1M Na ₂ SO ₄	0-0.45V	4.8 A/g	1141 F/g	6
Co ₃ O ₄ /Graphene	2M KOH	-0.05-0.45V	1 A/g	978 F/g	7
ZnO/Co3O4 nanorod	1M KOH	0-0.55V	1 A/g	1135 F/g	8
ZnO/Co ₃ O ₄ NBs-1	2М КОН	0.2-0.8V	2 A/g	1983 F/g	This work

References

- G. C. Li, P. F. Liu, R. Liu, M. Liu, K. Tao, S. R. Zhu, M. K. Wu, F. Y. Yi and L. Han, *Dalton T*, 2016, 45, 13311-13316.
- T. Huang, C. Zhao, R. Zheng, Y. Zhang and Z. Hu, *Ionics*, 2015, 21, 3109-3115.
- A. V. Radhamani, K. M. Shareef and M. S. Rao, *ACS Appl Mater Inter*, 2016, 8, 30531-30542.
- Y. Ouyang, X. Xia, H. Ye, L. Wang, X. Jiao, W. Lei and Q. Hao, ACS Appl Mater Inter, 2018, 10, 3549-3561.
- X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang and T. Zhai, *Nano Energy*, 2017, 31, 410-417.
- 6. A. K. Singh and D. Sarkar, *J Mater Chem A*, 2017, **5**, 21715-21725.
- S. Yang, Y. Liu, Y. Hao, X. Yang, R. W. Goddard, X. L. Zhang and B. Cao, Adv. Sci, 2018, 5, 1700659-1700669.
- M. Gao, W. K. Wang, Q. Rong, J. Jiang, Y. J. Zhang and H. Q. Yu, ACS Appl. Mater. Inter, 2018, 10, 23163-23173.