Supporting Information

Cellular Carbon-Wrapped FeSe₂ Nanocavities with Ultrathin Walls and Multiple Rooms for Ion Diffusion-Confined Ultrafast Sodium Storage

Yongchao Tang,^a Zongbin Zhao,^{* a} Xiaojuan Hao,^c Yue Wei,^d Han Zhang,^a Yanfeng Dong,^a Yuwei Wang,^a Xin Pan,^b Yanan Hou,^a Xuzhen Wang^b and Jieshan Qiu^{*a}

^a State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical

Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P.

R. China

^b School of Chemistry, Dalian University of Technology, Dalian 116024, China

^c Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton,

VIC 3168, Australia

^d State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China

*Corresponding authors: zbzhao@dlut.edu.cn; jqiu@dlut.edu.cn

Figure S1. Morphological characteristic of Fe₃C@PC: (a) FE-SEM image featuring a typical cellular architecture constructed from smooth carbon sheets; (b) TEM image showing a uniform mosaic of Fe₃C nanoparticles; (c-d) HR-TEM images displaying the presence of carbon layers housing the Fe₃C nanoparticles.

Figure S2. (a) N_2 adsorption isotherms of s-FeSe₂@PC and (b) the corresponding pore size distribution.

Figure S3. EDS spectra and corresponding elemental distribution of the as-obtained h-FeSe₂@PC.

Figure S4. Chemical compositions and morphological features of samples obtained at different selenization ramp rates (0.5 and 2 °C min⁻¹): (a-b) XRD patterns of FeSe_x@PC-0.5 and FeSe_x@PC-2; (c-d) TEM images of FeSe_x@PC-0.5; (e-f) TEM images of FeSe_x@PC-2.

Figure S5. Morphological features and chemical compositions analysis of h-FeSe₂@PC with different selenization time showing the evolution of FeSe₂ nanocavities: (a) XRD patterns of h-FeSe₂@PC-2 and h-FeSe₂@PC-4; (b-c) TEM images of h-FeSe₂@PC-2 (2 h); (d-e) TEM images of h-FeSe₂@PC-4 (4 h).

Figure S6. Chemical compositions and morphological features of s-FeSe₂@PC: (a) XRD pattern; (b)

Raman spectrum; (c) FE-SEM images; (d-e) TEM images; (f) HR-TEM image.

Figure S7. TGA profile of s-FeSe₂@PC showing around 62.1wt% weight loss.

Figure S8. High resolution C 1s (a) and N 1s (b) XPS spectra in h-FeSe₂@PC.

Figure S9 (a-b) CV curves of h-FeSe₂@PC and s-FeSe₂@PC anodes at a scan rate of 0.1 mV s⁻¹; (c-d) discharge/charge profiles of h-FeSe₂@PC and s-FeSe₂@PC anodes corresponding to (a) and (b), respectively.

Figure S10. Rate capability of fresh h-FeSe₂@PC anode showing an ascending tendency of capacity

with the increased current densities.

Figure S11. Electrochemical performance of PC anodes: (a) rate capability; (b) discharge/charge profiles at different current densities.

Figure 12. TEM images of the tested h-FeSe₂@PC anode at 5 A g⁻¹ over 2000 cycles.

Figure S13. Long-life cyclability of h-FeSe₂@PC anode at 10 A g⁻¹ over 1250 loops.

Figure S14. (a) CV curves and (b) corresponding b-values obtained from linear relationship between

 $\ln(i \text{ (peak current)}) \text{ and } \ln(v \text{ (scan rate)}).$

Figure S15. GITT curves of h-FeSe₂@PC anode at a pulse current density of 0.05 A g⁻¹.

Figure S16. (a) Rate capability comparison of h-FeSe₂@PC samples with different FeSe₂ contents (where the number represents the mass ratio of PVP to Fe(NO₃)₂·9H₂O in chelated precursors); (b) rate capability comparison of h-FeSe₂@PC obtained with different selenization time (2, 4, 8 h).

Current density	Our work	CoS/RGO ¹	FeSe ₂ microspheres ²	Urchin-like CoSe ₂ ³	SnSSe ⁴	FeS ₂ @FeSe ₂ ⁵	CoSe@CSs ⁶	VS_2 7
(A g ⁻¹)	Specific capacity (mA h g ⁻¹)							
0.1		636	447	434		596	900	540
0.2				422			711	539
0.5	414.5	549	418	403		486	644	470
1	413.3	455	403	397	475	426	584	440
2	407.6	420		390			535	420
2.5					415			
4	400.2							
5		359	388	378	320	346	390	400
6	398.6							
7.5					226			
8	397.7						286	
10	395.5	306	337	354	161	203		353
12	393.0							
15	392.7			270				300
20	384.3		231	210				277
25			226					
30				163				

 Table S1. Rate capability comparison of various metal chalcogenide-based anodes with ether-based
 electrolyte.

References

- S. Peng, X. Han, L. Li, Z. Zhu, F. Chen, M. Srinivansan, S. Adams, S. Ramakrishna, Small, 2016, 12, 1359-1368.
- [2] K. Zhang, Z. Hu, X. Liu, Z. Tao, J. Chen, Adv. Mater., 2015, 27, 3305-3309.
- [3] K. Zhang, M. Park, L. Zhou, G. Lee, W. Li, Y. Kang, J. Chen, Adv. Funct. Mater., 2016, 26, 6728-6735.
- [4] X. Wang, D. Chen, Z. Yang, X. Zhang, C. Wang, J. Chen, X. Zhang, M. Xue, Adv. Mater., 2016, 28, 8645-8650.
- [5] W. Zhao, C. Guo and C. M. Li, J. Mater. Chem. A, 2017, 5, 19195-19202.
- [6] Z. Ali, T. Tang, X. Huang, Y. Wang, M. Asif and Y. Hou, Energy Storage Materials, 2018, 13, 19-28.
- [7] R. Sun, Q. Wei, J. Sheng, C. Shi, Q. An, S. Liu and L. Mai, Nano Energy, 2017, 35, 396-404.