Supporting information:

H$_2$MoO$_{3-y}$ Nanobelts: An Excellent Alternative to Carbon Electrode for High Performance Mesoscopic Perovskite Solar Cells

Hua Zhang, a+ Huan Wang, b+ Yinglong Yang, a Chen Hu, a Yang Bai, a Teng Zhang, a Wei Chen, b,d and Shihe Yang a,c*

Dr. H. Zhang, Y. Yang, C. Hu, Dr. Y. Bai, Dr. T. Zhang and Prof. S. Yang

aDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Dr. H. Wang and Prof. W. Chen

bShenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

Prof. S. Yang

cGuangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China

Prof. W. Chen

dWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China

+These authors contribute equally to this work

*Corresponding authors. E-mail: chsyang@ust.hk
Figure S1 XPS survey spectra of the α-MoO$_3$ and H$_x$MoO$_{3-y}$ films.

Figure S2 (a) J-V curves of the α-MoO$_3$ and H$_x$MoO$_{3-y}$ films with identical thickness. (b) Histogram of specific conductivities based on the α-MoO$_3$ and H$_x$MoO$_{3-y}$ films, respectively.
Figure S3 (a) UPS spectra in different energy regions illustrating the derivation of the work function and the top of occupied states. Inset shows the semi-log representation of the valence band region close to the Fermi level. (b) The corresponding Tauc plot of the absorbance spectrum.

Figure S4 The steady-state PL spectra of the perovskite filled in the H$_x$MoO$_{3-y}$ and high-temperature carbon films.
Table S1. PL decay curves of the Glass/MAPbI$_3$, Glass/Carbon (MAPbI$_3$), and Glass/ H$_x$MoO$_{3-y}$ (MAPbI$_3$) samples fitted by a bi-exponential function I(t) = A$_1$exp(-t/τ$_1$) + A$_2$exp(-t/τ$_2$), and τ$_{avg}$ = (A$_1$/A$_1$ + A$_2$) + τ$_2$ × (A$_2$/A$_1$ + A$_2$).

<table>
<thead>
<tr>
<th>Substrates</th>
<th>A$_1$/A$_1$ + A$_2$</th>
<th>τ$_1$ (ns)</th>
<th>A$_2$/A$_1$ + A$_2$</th>
<th>τ$_2$ (ns)</th>
<th>τ$_{avg}$ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPbI$_3$</td>
<td>0.48</td>
<td>5.43</td>
<td>0.53</td>
<td>100.04</td>
<td>55.63</td>
</tr>
<tr>
<td>Carbon (MAPbI$_3$)</td>
<td>0.84</td>
<td>9.58</td>
<td>0.16</td>
<td>12.40</td>
<td>10.03</td>
</tr>
<tr>
<td>HxMoO${3-y}$ (MAPbI$_3$)</td>
<td>0.71</td>
<td>4.36</td>
<td>0.29</td>
<td>5.02</td>
<td>4.55</td>
</tr>
</tbody>
</table>

Figure S5 (a) Top view SEM images of H$_x$MoO$_{3-y}$ film prepared by drop-casting. (b) Histogram of the width of H$_x$MoO$_{3-y}$ nanobelts. (c) Histogram of the length of H$_x$MoO$_{3-y}$ nanobelts.
Figure S6 The optical photographs of highly dispersed H$_x$MoO$_{3-y}$ solution using deionized water (H$_2$O), ethanol (EtOH) and isopropanol (IPA) solvents, respectively.

Figure S7 The contact angle of the H$_x$MoO$_{3-y}$ film against DMF solvent.
Figure S8 Thickness dependence of device performance based on the HₓMoO₃₋ᵧ electrode.

Table S2 Performance summary of the champion devices with different thicknesses of the HₓMoO₃₋ᵧ electrode based on the structure of FTO/c-TiO₂/m-TiO₂/MAPbI₃/m-Al₂O₃/HₓMoO₃₋ᵧ.

<table>
<thead>
<tr>
<th>Thickness (µm)</th>
<th>V_{OC} (V)</th>
<th>J_{SC} (mA/cm²)</th>
<th>FF</th>
<th>PCE (%)</th>
<th>R_{sh} (Ω/cm²)</th>
<th>R_s (Ω/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.84</td>
<td>20.81</td>
<td>0.58</td>
<td>10.1</td>
<td>0.6k</td>
<td>7.5</td>
</tr>
<tr>
<td>2.7</td>
<td>0.89</td>
<td>21.04</td>
<td>0.61</td>
<td>11.4</td>
<td>2.0k</td>
<td>6.1</td>
</tr>
<tr>
<td>4.0</td>
<td>0.96</td>
<td>22.54</td>
<td>0.67</td>
<td>14.5</td>
<td>3.5k</td>
<td>5.3</td>
</tr>
<tr>
<td>5.5</td>
<td>0.95</td>
<td>21.90</td>
<td>0.64</td>
<td>13.3</td>
<td>2.8k</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Figure S9 The light-intensity dependence of J_{SC} for the champion devices based on the high temperature carbon and H_xMoO_{3-y} electrodes, respectively.

Figure S10 The steady-state power output at the maximum power point for both the champion devices.
Figure S11 (a)-(d) Time-dependent normalized photovoltaic parameters of unsealed devices based on the respective H$_{x}$MoO$_{3-y}$ and high temperature carbon electrodes under ambient air at 65-85% relative humidity in the dark.
Figure S12 XRD patterns of the perovskite filled in the structure of FTO/m-Al$_2$O$_3$/H$_3$MoO$_{3-y}$ before and after degradation, which were measured after continuously exposing the samples in ambient air at different relative humidity.