Rich-grain-boundary Ni₃Se₂ nanowire arrays as multifunctional electrode for electrochemical energy conversion and storage

Xin Shi,^a Hui Wang,^a Palanisamy Kannan,^b Jieting Ding,^a Shan Ji,^{*ab} Fusheng Liu,^{*a}

Hengjun Gai,^a and Rongfang Wang*^a

^a College of Chemical Engineering, Qingdao University of Science and Technology,

Qingdao, 266042, China

^b College of Biological, Chemical Science and Chemical Engineering, Jiaxing

University, Jiaxing, 314001, China

*Corresponding authors:

Shan Ji (*): jishan@mail zjxu.edu.cn, Tel./fax: +86 (0)15024355548 Fusheng Liu (*): liufusheng63@sina.com, Tel./fax: +86 (0)15192559078

Rongfang Wang (*): rfwang@qust.edu.cn, Tel./fax: +86(0)13919839172

Figure S1. SEM images of Ni₃Se₂/NF-0.2 (a, b), Ni₃Se₂/NF-0.3 (c, d), Ni₃Se₂/NF-0.5

(e, f) and Ni₃Se₂/NF-0.6 (g, h).

Figure S2. Picture showing the destruction of Ni foam while using 0.7 mmol Se powder

for Ni₃Se₂/NF nanowire arrays.

Figure S3. SEM images of nickel selenide prepared with different reaction time, (a) 6

h, (b) 12 h, (c) 18 h and (d) 24 h.

Figure S4. XRD patterns obtained for Ni₃Se₂/NF samples with Se powder concentration of 0.2 (fluorescent line), 0.3 (red line), 0.4 (blue line), 0.5 (pink line), and 0.6 mmol (green line).

Figure S5. XPS of Ni₃Se₂/NF samples: (a) survey, (b) Ni 2p and (c) Se 3d

Figure S6. (a) Cycling stability of $Ni_3Se_2/NF-0.4$, (b) SEM and (c) XRD of $Ni_3Se_2/NF-0.4$, (c) SEM and (c)

0.4 after stability cycling analysis.

Figure S7. (a) SEM and (b) XRD of $Ni_3Se_2/NF-0.4$ after i-t curve analysis for HER.

Figure S8. (a) SEM and (b) XRD of $Ni_3Se_2/NF-0.4$ after i-t curve analysis for OER.

Figure S9. Gas volume versus time for the overall water splitting process.

Table	S1 .	Mass	loading	of Ni ₃ Se ₂ /NF	synthesized	by	different	amounts	of	selenium
powde	er									

Electrode	Ni ₃ Se ₂ /NF-0.2	Ni ₃ Se ₂ /NF-0.3	Ni ₃ Se ₂ /NF-0.4	Ni ₃ Se ₂ /NF-0.5	Ni ₃ Se ₂ /NF-0.6
Mass loading /	2.5	4.3	6.4	7.6	9.5
mg cm ⁻²					

Samples	Binding E	nergy / eV	Binding Energy / eV		
	$Ni^{2+} 2P_{1/2}$	Ni ²⁺ 2P _{3/2}	Se 3d _{3/2}	Se 3d _{5/2}	
Ni ₃ Se ₂ /NF-0.3	854.5	872.7	56	57.5	
Ni ₃ Se ₂ /NF-0.4	853.6	871.4	56.2	57.3	
Ni ₃ Se ₂ /NF-0.5	853.4	871.1	56.1	57.2	
Ni ₃ Se ₂ /NF-0.6	853.7	871.5	56.5	57.6	

Table S2. XPS binding energy of Ni 2p and Se 3d of Ni_3Se_/NF samples

Positive Electrode	Negative	Potential	Energy	Power	References
Materials	Electrode	Window (V)	Density (Wh	Density (W	
	Materials		kg-1)	kg ⁻¹)	
Ni ₃ Se ₂	AC	1.6	23.3	398.1	[1]
Ni ₃ Se ₂	AC	1.5	32.8	677.03	[2]
CoSe	AC	1.5	18.6	750	[3]
Ni0.67Co0.33Se	RGO	1.5	36.7	750	[4]
Ni _{0.85} Se@MoSe ₂	AC	1.6	25.5	420	[5]
NiSe@MoSe2	AC	1.65	27.5	400	[6]
Ni ₃ Se ₂ /NF	AC	1.6	42.6	284.8	This work

Table S3. Benchmarking the capacitor performance of $Ni_3Se_2/NF-0.4$ against othernickel selenide-based materials in the alkaline electrolyte

Catalysts	Electrolyte	η(HER, mV)/current density	Tafel Slope (mV dec ⁻¹)	η(OER) (mV)/curren t density	Tafel Slop e (mV dec ⁻ ¹)	Cell Voltage for Two- Electrod e Water Splitting (V) (10 mA cm ⁻²)	References
Ni ₃ Se ₂ /NF	1 M KOH			315 (100 mA cm ⁻ ²)	40.2		[7]
NiSe/NF	1 M KOH			411 (100 mA cm ⁻ ²)	59.4		
NiSe _x /NF	1 M KOH	356 (100 mA cm ⁻²)	96.5	303 (100 mA cm ⁻²)	85.8	1.68	[8]
NiSe ₂ /Ti	1 M KOH	100 (10 mA cm ⁻ ²)	107	370 (100 mA cm ⁻²)	102	1.7	[9]
Co-Ni- Se/C/NF	1 M KOH	183 (100 mA cm ⁻²)	81	300 (50 mA cm ⁻²)	63	1.6	[10]
NF- Ni3Se2/Ni	1 M KOH	279 (100 mA cm ⁻²)	79	353 (100 mA cm ⁻²)	144	1.61	[11]
(Ni,Co) _{0.85} Se/NF	1 M KOH	169 (10 mA cm ⁻ ²)	115.6 6	287 (20 mA cm ⁻²)	86.75	1.65	[12]
NiSe/NF	1 M KOH	177 (10 mA cm ⁻ ²)	58.2	290 (10 mA cm ⁻²)	77.1	2.1	[13]
Ni _{0.75} Se/N F	1 M KOH	233 (10 mA cm ⁻ ²)	86	360 (10 mA cm ⁻²)	86		[14]
Ni ₃ Se ₂ /NF	1 M KOH	95 (50 mA cm ⁻²)	67	320 (100 mA cm ⁻²)	58	1.62 V	This work

Table S4. Benchmarking the overpotential on $Ni_3Se_2/NF-0.4$ against other nickelselenide-based catalysts in alkaline electrolyte.

Reference

- 1. S. Jiang, J. Wu, B. Ye, Y. Fan, J. Ge, Q. Guo and M. Huang, *J. Mater. Sci.- Mater. El.*, 2017, **29**, 4649-4657.
- 2. G. Nagaraju, S. M. Cha, S. C. Sekhar and J. S. Yu, *Adv. Energy Mater.*, 2017, **7**, 1601362.
- 3. Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji and Y. Liu, *Electrochim Acta*, 2018, **269**, 30-37.
- 4. H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian and K. Shu, *J. Mater. Chem. A*, 2015, **3**, 23653-23659.
- H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei and X. Gong, *ACS appl. Mater. Interfaces*, 2017, 9, 17067-17075.
- H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng and Z. Lei, ACS Sustain Chem. Eng., 2017, 5, 5951-5963.
- 7. A. Sivanantham and S. Shanmugam, *Appl. Catal. B Environ.*, 2017, **203**, 485-493.
- 8. S. Dutta, A. Indra, Y. Feng, T. Song and U. Paik, *ACS appl. Mater. Interfaces*, 2017, **9**, 33766-33774.
- 9. T. Liu, A. M. Asiri and X. Sun, *Nanoscale*, 2016, **8**, 3911-3915.
- 10. F. Ming, H. Liang, H. Shi, X. Xu, G. Mei and Z. Wang, J. Mater. Chem. A, 2016, 4, 15148-15155.
- 11. R. Xu, R. Wu, Y. Shi, J. Zhang and B. Zhang, *Nano Energy*, 2016, **24**, 103-110.
- 12. K. Xiao, L. Zhou, M. Shao and M. Wei, *J. Mater. Chem. A*, 2018, **6**, 7585-7591.
- 13. H. Wu, X. Lu, G. Zheng and G. W. Ho, *Adv. Energy Mater.*, 2018, **8**, 1702704.
- 14. D. Yang, T. Sano, H. Sasabe, L. Yang, S. Ohisa, Y. Chen, Y. Huang and J. Kido, *ACS appl. Mater. Interfaces*, 2018, **10**, 26465-26472.