Supporting information

Uniform Pd_{0.33}Ir_{0.67} nanoparticles supported on nitrogen-doped carbon with remarkable activity toward alkaline hydrogen oxidation reaction

Yuanyuan Cong,^{abc1} Ian T. McCrum,^{cd1} Xueqiang Gao,^{be1} Yang Lv,^{ac} Shu Miao,^f Zhigang Shao,^b Baolian Yi, ^b Hongmei Yu,^{*b} Michael J. Janik^{*cd} and Yujiang Song^{*ac}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

^b Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^c Penn State and DUT Joint Center for Energy Research, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

^d Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States.

^e University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100039, China.

^f Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

* Corresponding authors: E-mail addresses: hmyu@dicp.ac.cn; mjanik@psu.edu; yjsong@dlut.edu.cn.

¹ These authors contributed equally to this work.

Table of contents

A.	Supplementary methods	1
	SI Extraction of j_k , $j_{0,s}$ and $j_{0,m}$	1
B.	Supplementary figures	.2-9
C.	Supplementary tables1	0-11
D.	Supplementary references	12

A. Supplementary methods

SI | Extraction of kinetic current density (j_k) , mass specific exchange current density

$(j_{0,m})$ and area specific exchange current density $(j_{0,s})$

 j_k of alkaline HOR was extracted by reversible Koutecky-Levich equation¹ as follows.

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_d}$$
(1)

Where j is the measured current density, j_k is kinetic current density, j_d is diffusion current density defined as

$$\eta_d = -\frac{RT}{2F} ln \left(1 - \frac{j_d}{j_l}\right)$$
(2)

Where η_d is the diffusion overpotential, j_l is the hydrogen mass transport limited current density and can be described by Levich equation², F is Faraday's constant, R is the universal gas constant, and T is the temperature.

 $j_{0,m}$ was obtained by fitting the kinetic current normalized by metal mass on RDE with respect to the overpotential (η) using the Bulter-Volmer equation as follows,

$$j_k = j_{0,m} \left(e^{\frac{\alpha F}{RT}\eta} - e^{\frac{(\alpha - 1)F}{RT}\eta} \right)$$
(3)

where α represents the electron transfer coefficient.

 $j_{0,s}$ can be obtained as follows.

$$j_{0,s}(\text{mA cm}^{-2}) = j_{0,m}(\text{A g}^{-1})/(ECSA (\text{m}^2 \text{g}^{-1}) \times 10)$$
 (4)

B. Supplementary figures

Figure S1. TGA curves of Pt/N-C recorded in dry air with a heating rate of 10 °C min⁻¹. The residual weight corresponds to the metal loading, which is slightly higher than that of theoretical value in that metal is possibly oxidized during the TGA test.

Figure S2. XPS spectrum of N-C (Inset: high-resolution N 1s XPS spectrum).

Figure S3. TGA curves of $Pd_{1-x}Ir_x/N-C$ (x= 0.33, 0.50, 0.67, 0.75, 0.80, 0.91), Pd/N-C and Ir/N-C recorded in dry air with a heating rate of 10 °C min⁻¹. The residual weight corresponds to the metal loading, which is slightly higher than that of theoretical value in that metal is possibly oxidized during the TGA test.

Figure S4. Magnified (111) peak in XRD patterns of Pd_{1-x}Ir_x/N-C (x= 0.33, 0.50, 0.67, 0.75, 0.80, 0.91), Pd/N-C and Ir/N-C.

Figure S5. TEM images and corresponding size distribution histograms of $Pd_{0.67}Ir_{0.33}/N-C$ (a_1-a_3), $Pd_{0.50}Ir_{0.50}/N-C$ (b_1-b_3), $Pd_{0.33}Ir_{0.67}/N-C$ (c_1-c_3), $Pd_{0.25}Ir_{0.75}/N-C$ (d_1-d_3), $Pd_{0.20}Ir_{0.80}/N-C$ (e_1-e_3), $Pd_{0.09}Ir_{0.91}/N-C$ (f_1-f_3), Pd/N-C (g_1-g_3), Ir/N-C (h_1-h_3) and $Pd_{0.33}Ir_{0.67}/C$ (i_1-i_3).

Figure S6. XRD patterns of $Pd_{0.33}Ir_{0.67}/N$ -C and $Pd_{0.33}Ir_{0.67}/C$.

Figure S7. CO stripping voltammetry curves of commercial Pt/C recorded in 0.1 M KOH aqueous solution. Red and black lines are CO stripping and background curves, respectively. Sweep rate: 20 mV s⁻¹, Temperature: 25 °C, Metal loading: 10 µg cm_{disk}⁻².

Figure S8. (a) HOR/HER polarization curves of $Pd_{0.33}Ir_{0.67}/N$ -C and Pt/N-C recorded in 0.1 M KOH aqueous solution saturated with H₂. Rotation rate: 1600 rpm, Positive sweep rate: 10 mV s⁻¹, Temperature: 25 °C, Metal loading: 10 µg cm_{disk}⁻². (b) HOR/HER Tafel plots of Pd_{0.33}Ir_{0.67}/N-C and Pt/N-C derived from (a) with kinetic current density fitted into Butler-Volmer equation at $\alpha_a + \alpha_c = 1$ (solid lines).

Figure S9. TEM images of Pd_{0.33}Ir_{0.67}/C before (a) and after (b) ADT; TEM images of Pt/C before (c) and after (d) ADT. (Inset: HRTEM image of a typical Pd_{0.33}Ir_{0.67} nanoparticle after ADT.

Figure S10. Photographs of Pd_{0.33}Ir_{0.67}/N-C before (a) and after (b) single cell tests; photographs of Pt/C before (c) and after (d) single cell tests.

Figure S11. SEM images of anodic $Pd_{0.33}Ir_{0.67}$ /N-C catalyst layer before (a) and after (b) single cell tests; SEM images of anodic Pt/C catalyst layer before (c) and after (d) single cell tests.

Figure S12. (a) Single cell performance of $Pd_{0.33}Ir_{0.67}/N$ -C and commercial Pt/C as anode electrocatalysts at 65 °C after IR-correction and corresponding magnified kinetic region (b); (c) Single cell performance of $Pd_{0.33}Ir_{0.67}/N$ -C and commercial Pt/C as anode electrocatalysts at 79 °C after IR-correction and corresponding magnified kinetic region (d).

C. Supplementary tables

Electrocatalysts	Pd/Ir ratio determined by ICP	Metal loading determined by ICP	Metal loading determined by TGA			
Pd/N-C		19.8 %	20.2 %			
Pd _{0.67} Ir _{0.33} /N-C	0.65/0.35	19.7 %	21.4 %			
$Pd_{0.50}Ir_{0.50}/N-C$	0.50/0.50	19.6 %	21.5 %			
Pd _{0.33} Ir _{0.67} /N-C	0.32/0.68	19.2 %	22.0 %			
Pd _{0.25} Ir _{0.75} /N-C	0.24/0.76	19.4 %	21.0 %			
Pd _{0.20} Ir _{0.80} /N-C	0.19/0.81	19.8 %	22.0 %			
Pd _{0.09} Ir _{0.91} /N-C	0.10/0.90	19.9 %	21.6 %			
Ir/N-C		19.7 %	21.0 %			
Pd _{0.33} Ir _{0.67} /C	0.33/0.67	19.5 %	22.7 %			
Pt/N-C		19.8 %	22.2 %			

Table S1. Pd/Ir ratio and metal loading of Pd_{1-x}Ir_x/N-C (x= 0.33, 0.50, 0.67, 0.75, 0.80, 0.91), Pd/N-C, Ir/N-C, Pd_{0.33}Ir_{0.67}/C and Pt/N-C

Table S2. The activity data of Pt/C in precious literatures and this study

Electrocatalysts	$\label{eq:activity} Area \ \text{specific activity} \ / \ H_{upd} \qquad \text{Area specific activity} \ / \ CO \ \text{stripping}$		Mass specific activity	Ref.
	(mA cm ⁻²)	(mA cm ⁻²)	(A g ⁻¹)	
Pt/C	0.05		60	3
Pt/C	0.57		350	4
Pt/C	0.46	0.28	294	5
Pt/C	0.48		240	6
Pt/C	0.67	0.38	342	this study

Table S3. ECSAs of Pd ₁	$_{x}Ir_{x}/N-C$ (x= 0.33)	, 0.50, 0.67, 0.75,	, 0.80, 0.91), Pd/N-C	C, Ir/N-C and commercial Pt/C
------------------------------------	----------------------------	---------------------	-----------------------	-------------------------------

	Pd/N-C	$Pd_{0.67}Ir_{0.33}/N-C$	$Pd_{0.50}Ir_{0.50}/N-C$	$Pd_{0.33}Ir_{0.67}/N-C$	Pd _{0.25} Ir _{0.75} /N-C
$ECSA_{co}(m^2 g^{-1})$	67 ± 7.3	105 ± 18.6	116 ± 6.6	106 ± 10.5	115 ± 4.8
	$Pd_{0.20}Ir_{0.80}/N-C$	$Pd_{0.09}Ir_{0.91}/N-C$	Ir/N-C	Pt/C	
$ECSA_{co}(m^2 g^{-1})$	111 ± 5.2	118 ± 7.6	97 ± 13.3	89 ± 8.5	

Table S4. Summary of Pd 3d and Ir 4f binding energies of Pd/N-C, $Pd_{0.33}Ir_{0.67}/N$ -C and Ir/N-C from XPS results (Data in brackets represent the relative content of different Pd or Ir species to total Pd or Ir)

Electrocatalysts	Pd 3d _{5/2}		Ir 4f _{7/2}	
	Pd ⁰	Pd ²⁺	Ir ⁰	Ir ⁴⁺
Pd/N-C	335.3 ^[a] (50%)	336.2 (50%)		
Pd _{0.33} Ir _{0.67} /N-C	335.9 (46%)	337.6 (54%)	61.0 (71%)	62.2 (29%)
Ir/N-C			61.2 (65%)	62.4 (35%)

[a] binding energy (eV)

				-	
Alkaline HOR	Anode loading	Backpressure	Temperature	Power density	Ref.
electrocatalysts	$(mg_{PGM} \text{ cm}^{-2})$	(Mpa)	(°C)	(mW cm ⁻²)	
Pd/C-CeO ₂	0.3 (higher)	0.3 (higher)	73	500	7
Pd/Ni	0.3	0.4	73	400	8
IrRu NWs/C	0.1	0.1	60	485	9
3 nm Ru/C	0.5	0	50	250	10
Pt/C	0.5	0	50	185	10
Pt/C	0.1	0	60	233	11
Pt/C	0.4_{cat}		45	120	12
Pt/C	0.4	0.05	50	370	13
Pt/C	1.25 (higher)	0	60	675	14
Pt/C	0.4 (higher)	0.1	60	600	15
Pd _{0.33} Ir _{0.67} /N-C	0.2	0.1	79	514	this study
Pt/C	0.2	0.1	79	400	this study

Table S5. HEMFCs performance with non-Pt and Pt alkaline HOR electrocatalysts reported in literature and this study

D. <u>Supplementary references</u>

- 1 J. Zheng, Y. Yan and B. Xu, J. Electrochem. Soc., 2015, 162, F1470-F1481.
- 2 J. Zheng, Z. Zhuang, B. Xu and Y. Yan, ACS Catal., 2015, 5, 4449-4455.
- 3 J. Ohyama, T. Sato, Y. Yamamoto, S. Arai and A. Satsuma, J. Am. Chem. Soc., 2013, 135, 8016-8021.
- 4 W. Sheng, H. A. Gasteiger and Y. Shao-Horn, J. Electrochem. Soc., 2010, 157, B1529-B1536.
- 5 J. Zheng, W. Sheng, Z. Zhuang, B. Xu and Y.Yan, Sci. Adv., 2016, 2, e1501602.
- 6 E. G. Mahoney, W. Sheng, Y. Yan and J. G. Chen, ChemElectroChem, 2014, 1, 2058-2063.
- 7 H. A. Miller, A. Lavacchi, F. Vizza, M. Marelli, B. F. Di, F. D'Acapito, Y. Paska, M. Page and D. R. Dekel, Angew. Chem. Int. Ed., 2016, 55, 6004-6007.
- 8 M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D. R. Dekel and D. Zitoun, *J. Power Sources*, 2016, **304**, 332-339.
- 9 B. Qin, H. Yu, X. Gao, D. Yao, X. Sun, W. Song, B. Yi and Z. Shao, J. Mater. Chem. A, 2018, 6, 20374-20382.
- 10 J. Ohyama, T. Sato and A. Satsuma, J. Power Sources, 2013, 225, 311-315.
- 11 B. Qin, H. Yu, J. Jia, X. Gao, D. Yao, X. Sun, W. Song, B. Yi and Z. Shao, Nanoscale, 2018, 10, 4872-4881.
- 12 I. Kruusenberg, L. Matisen, Q. Shah, A. M. Kannan and K. Tammeveski, Int. J. Hydrogen Energy 2012, 37, 4406-4412.
- 13 Y. Zhao, H. Yu, F. Xie, Y. Liu, Z. Shao and B. Yi, J. Power Sources 2014, 269, 1-6.
- 14 T. J. Omasta, L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe and W. E. Mustain, J. Power Sources, 2018, 375, 205-213.
- 15 Y. Wang, G. Wang, G. Li, B. Huang, J. Pan, Q. Liu, J. Han, L. Xiao, J. Lu and L. Zhuang, *Energy Environ. Sci.*, 2015, **8**, 177-181.