Supporting Information

Polarity Engineering of Porous Aromatic Frameworks for Specific Water Contaminants Capture

Xiaoshan Shen, a Muhammad Faheem, a Yutaka Matsuo, b Saba Aziz, a Xu Zhang, a Yuhan Li, c Jian Song, a Yuyang Tian, *a and Guangshan Zhu a

Contents:

Section 1. Materials Characterization

Section 2. References
Fig. S1 FT-IR spectra of (a) PAF-79 and (b) PAF-80 and their respective starting materials 1,2
Fig. S2 TGA curves of (a) PAF-79, (b) PAF-80 and (c) PAF-80-SO$_3$Na and PAF-80-SO$_3$H
Fig. S3 Represents (a) BET plots and (b) Rouquerol plots of PAF materials and leads to selection of an appropriate pressure range (0.01-0.05, 0.01-0.08 and 0.01-0.1 P/P₀ for PAF-79, PAF-80 and PAF-80-SO₃H, respectively).
Fig. S4 Antibiotic adsorption isotherms of (a) PAF-79, (b) PAF-80, (c) PAF-80-SO$_3$H for tetracycline (TC) and (d) PAF-79, (e) PAF-80, (f) PAF-80-SO$_3$H for doxycycline hydrochloride (DOX).
Fig. S5 Recyclability of PAF-80-SO$_3$H for doxycycline hydrochloride (DOX) adsorption by shaking DOX/PAF-80-SO$_3$H for 12h in aqueous solution to displace adsorbed species.

References