Supplementary Materials for

Sodium storage in hard carbon with curved graphene platelets as the basic structural units

Ke Wanga,c, Yaobin Xua,c, Yuan Lic, Vinayak Dravidc, Jinsong Wua,b,c, Ying Huanga

aMOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi’an 710072, PR China. E-mail: yingh@nwpu.edu.cn

bNanostructure Research Centre, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China. E-mail: wujs@whut.edu.cn;

cDepartment of Materials Science and Engineering, NUANCE Center, Northwestern University, Evanston, Illinois 60208, USA

\#These authors contributed equally to this work.
Table of Contents:

I. Supplementary Figures S1 to S7
II. Supplementary Formula S1 to S4
III. Supplementary Video S1
I. Supplementary Figure

Fig. S1 Photographs of sweet-gum tree and sweet gum.
Fig. S2 The curvature of graphene layer measured for the hard carbon processed at (a) 800, (b) 1000 and (c) 1200°C. The curvature is measured by dividing the actual length of a graphene (yellow dotted lines) with the length of the straight line connecting the beginning and ending points (red dotted lines).
Fig. S3 N$_2$ adsorption/desorption isotherms (a) and the pore size distribution curve (b) of SGHC-800, SGHC-1000 and SGHC-1200.
Fig. S4 Discharge/charge curves of (a) SGHC-800, (b) SGHC-1000 and (c) SGHC-1200 at a current density of 50 mA g\(^{-1}\) for 40th cycle.
Fig. S5 Low-magnification TEM image of SGHC-1000 particle, before sodiation (a) and after sodiation (b).
Fig. S6 STEM images of a pristine SGHC-1000 particle before cycle collected by a high-angle annular dark field detector (a) and a bright field detector (b). STEM images of a SGHC-1000 particle cycled 100 cycles at a current density of 50 mA g$^{-1}$ collected by a high-angle annular dark field detector (c) and a bright field detector (d).
Fig. S7 STEM images of a SGHC-1000 particle before cycle (a), after 100 cycles at a current density of 50 mA g$^{-1}$ (b). The graphene interlayer distance are measured and labeled.
II. Formula for parameters of hard carbon

\[d_{002} = \frac{\gamma}{2 \sin \theta_{002}} \]

\[Lc = \frac{0.89 \times \gamma}{B_{002} \times \cos \theta_{002}} \]

\[n = \frac{Lc}{d_{002}} \]

\[La = \frac{1.77 \times \gamma}{B_{100} \times \cos \theta_{100}} \]

The parameters (graphene interlayer distance \(d_{002} \), thickness of graphene layers \(Lc \), number of graphene layers \(n \), average lateral length \(La \)) are calculated from the x-ray diffraction spectra, where \(\lambda \) is the wavelength of Cu Ka radiation, \(\theta \) is the diffraction angle in radians, and \(B \) is the half maximum intensity in radians.
III. Supplementary Video

Video S1. In-situ TEM observation of sodiation of SGHC-1000 hard carbon particle under a potential bias of -3V. The frame speed is 64-times faster than real time.