Supporting information

A heterogeneous single Cu catalyst of Cu atoms confined on the spinel lattice of MgAl₂O₄ with good catalytic activity and stability for NO reduction by CO.

Jichun Wu, Yuanzhi Li*, Yi Yang, Qian Zhang, Li Yun, Shaowen Wu, Chongyang Zhou, Zhongkai Jiang, Xiujian Zhao

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China. Email: liyuanzhi66@hotmail.com

Figure S1. XRD patterns of 5%Cu-MgAl₂O₄.

Figure S2. N₂ adsorption and desorption isotherm (A) and pore size distribution (B) of the Cu₁-MgAl₂O₄ sample.
Figure S3. N$_2$ adsorption and desorption isotherm (A) and pore size distribution (B) of the pure MgAl$_2$O$_4$ sample.

Figure S4. The optimized geometry of the Mg$_{11}$Cu$_{24}$O$_{48}$ slab with the spinel structure of MgAl$_2$O$_4$ and {311} surface.
Figure S5. CO-TPR profiles of the Cu$_{1}$O$_{1}$-MgAl$_{2}$O$_{4}$ (a) and pure MgAl$_{2}$O$_{4}$ (b) samples. The pure MgAl$_{2}$O$_{4}$ sample has a strong negative peak around 75 °C and broad negative peaks above 240 °C due to the desorption of CO adsorbed on the pure MgAl$_{2}$O$_{4}$ sample. No CO consumption peak is observed for the pure MgAl$_{2}$O$_{4}$ sample, indicating that it cannot be reduced by CO. The Cu$_{1}$O$_{1}$-MgAl$_{2}$O$_{4}$ sample has a strong negative peak around 88 °C and broad negative peaks around 280 and 510 °C due to the desorption of CO adsorbed on the Cu$_{1}$O$_{1}$-MgAl$_{2}$O$_{4}$ sample. In striking contrast to the pure MgAl$_{2}$O$_{4}$ sample, the Cu$_{1}$O$_{1}$-MgAl$_{2}$O$_{4}$ sample has a strong CO consumption peak around 366 °C, indicating that it is reduced by CO.

Figure S6. Geometry of a Cu$_{12}$ supercell with cubic structure of metallic copper.
Figure S7. Time course of NO conversion (A), N\textsubscript{2} yield (B), and N\textsubscript{2}O selectivity (C) of Cu\textsubscript{1}-MgAl\textsubscript{2}O\textsubscript{4} for NO reduction by CO at 400 °C at different space velocities of 60,000 (a) and 300,000 (b) mL g-1\textsubscript{catalyst} h-1.
Figure S8. Time course of NO conversion (A), N\textsubscript{2} yield (B), and N\textsubscript{2}O selectivity (C) of Cu\textsubscript{1}-MgAl\textsubscript{2}O\textsubscript{4} for NO reduction by CO in the presence of water at 800 °C at a space velocity of 36,000 mL g-1\text{catalyst h}-1.
Figure S9. Geometries of the initial states, transition states, and intermediates for NO reduction by CO on the CuMg₁₁Al₂₃O₄₈ slab: Adsorbed CO (A), transition state of CO oxidation (B), and CO₂ intermediate (C) formed on the CuMg₁₁Al₂₃O₄₇ slab with one oxygen vacancy. Adsorbed CO (D) and transition state of CO oxidation (E) on the CuMg₁₁Al₂₃O₄₇ slab with one oxygen vacancy, and CO₂ intermediate (F) formed on the resultant CuMg₁₁Al₂₄O₄₆ slab with two oxygen vacancies. Two adsorbed NO molecules (G) and transition state of N₂O₂ decomposition to N₂O (H) on the CuMg₁₁Al₂₄O₄₆ slab with two oxygen vacancies, and N₂O intermediate (I) formed on the resultant CuMg₁₁Al₂₃O₄₇ slab with one oxygen vacancy. Transition state of N₂O decomposition to N₂ (J) on the CuMg₁₁Al₂₃O₄₇ slab with one oxygen vacancy and N₂ intermediate (K) formed on the resultant CuMg₁₁Al₂₃O₄₈ slab.
Figure S10. FTIR spectra of 10 vol% N$_2$O/He on the Cu$_2$-MgAl$_2$O$_4$ sample.