Supplemental Information for

Elucidating the Electronic Structure of CuWO₄ Thin Films for Enhanced Photoelectrochemical Water Splitting

C. M. Tian¹, M. Jiang², D. Tang¹, L. Qiao², H. Y. Xiao², F. E. Oropeza³, J. P. Hofmann³, E. J. M. Hensen³, A. Tadich⁴, W. Li⁶, D. C. Qi⁷, and K. H. L. Zhang¹*

¹State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China.
²School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
³Laboratory of Inorganic Materials Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
⁴Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
⁵Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
⁶Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
⁷School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia

*Email: kelvinzhang@xmu.edu.cn
Figure S1. XRD patterns of the CuWO$_4$ thin films annealed at different temperatures, indicating that the crystalline phase of CuWO$_4$ starts to form at temperatures above 450 °C.

Figure S2. (a) Photocurrent densities of CuWO$_4$ photoelectrodes prepared by at different annealing temperatures, and (b) different film thickness; the photocurrent density obtained under simulated AM 1.5G at an applied bias of +1.23 V vs. RHE.
Figure S3: Incident photon-to-current conversion efficiencies (IPCE) spectra of CuWO₄ and 1.5 nm Co₃O₄ modified CuWO₄ at an applied bias of +1.23 V vs. RHE. The low IPCE in range of 400 nm - 500 nm is likely due to 1) low absorption coefficient of CuWO₄ because both of the valence band edge and conduction band edge are of Cu 3d character, i.e., optical excitation is partially forbidden; 2) hole state excited with low photon energy having a low mobility, similar to the case of Fe₂O₃.¹,²

Table S1. The fitted R_{ct} values of Co₃O₄/CuWO₄ heterojunctions with different Co₃O₄ thickness

<table>
<thead>
<tr>
<th></th>
<th>CuWO₄</th>
<th>1.5-Co₃O₄/CuWO₄</th>
<th>3-Co₃O₄/CuWO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{ct} (KΩ)</td>
<td>2.8</td>
<td>1.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Figure S4. Comparisons of XPS spectra of the CuWO₄ photoanode before and after stability test (a) Cu 2p₃/2, (b) W 4f and (c) valence band (VB); the Cu 2p, W 4f and VB spectra show very similar lineshapes before and after 10 hour stability test, indicating there is no much change of the electronic structures. (d) Comparison of XRD patterns for the CuWO₄ photoanode before and after stability test, showing pure phase of CuWO₄ before and after test.

Reference: