Supporting Information

SnO₂-Ti₃C₂ MXene electron transport layers for perovskite solar cells

Lin Yang, Yohan Dall’Agnese, Kanit Hantanasirasakul, Christopher E. Shuck, Kathleen Maleski, Mohamed Alhabeb, Gang Chen, Yu Gao, Yoshitaka Sanehira, Ajay Kumar Jena, Liang Shen, Chunxiang Dall’Agnese, Xiao-Feng Wang, Yury Gogotsi, Tsutomu Miyasaka

a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China

b A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States

c Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8503, Japan

d State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China

Corresponding Authors

* Chunxiang Dall’Agnese, E-mail: chunxiang@dallagnese.fr

* Xiao-Feng Wang, E-mail: xf_wang@jlu.edu.cn
Figure S1. TEM image of SnO$_2$-Ti$_3$C$_2$ (1.0 wt.%) nanocomposites.

Figure S2. Ultraviolet photoelectron spectra of (a) SnO$_2$ and (b) SnO$_2$-Ti$_3$C$_2$ (1.0 wt.%) films spin-coated onto ITO substrates. The HOMO energy levels were determined by the intersection of baseline with the tangent line of the spectra, that is, HOMO = −(Φ + E_B) (eV).
Table S1. Summary of the optoelectronic parameters of SnO$_2$ and SnO$_2$–Ti$_3$C$_2$ (1.0 wt.‰).

<table>
<thead>
<tr>
<th>ETL</th>
<th>λ_{onset} (nm)</th>
<th>E_g (eV) a</th>
<th>HOMO (eV)</th>
<th>LUMO (eV) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$</td>
<td>360</td>
<td>3.44</td>
<td>-7.83</td>
<td>-4.39</td>
</tr>
<tr>
<td>SnO$_2$–Ti$_3$C$_2$ (1.0 wt.‰)</td>
<td>360</td>
<td>3.44</td>
<td>-8.07</td>
<td>-4.63</td>
</tr>
</tbody>
</table>

a Calculated from the onset absorption: E_g (eV) = 1240 / λ_{onset} (nm).

b LUMO = HOMO + E_g.

Figure S3. Histograms of power conversion efficiencies (PCE) measured for 18 cells using (a) SnO$_2$ and (b) SnO$_2$–Ti$_3$C$_2$ (1.0 wt.‰) ETLs, fitted with a Gaussian distribution (red line).

Figure S4. Forward and reverse scans of J–V curves for the devices based on SnO$_2$ and SnO$_2$–Ti$_3$C$_2$ (1.0 wt.‰) as ETLs.
Figure S5. (a) X-ray diffraction pattern of Glass/ITO/ETL/CH$_3$NH$_3$PbI$_3$ films, (b-d) the top-view SEM images of perovskite layer coated onto ITO/SnO$_2$, ITO/SnO$_2$-Ti$_3$C$_2$ (1.0 wt.%), and ITO/Ti$_3$C$_2$, respectively.

Figure S6. (a) The digital photo, and (b-d) top-view SEM images of SnO$_2$, SnO$_2$-Ti$_3$C$_2$ (1.0 wt.%) and Ti$_3$C$_2$ films spin-coated on ITO substrates.
Figure S7. Typical $J-V$ curves for the devices based on (a) SnO$_2$, (b) SnO$_2$-Ti$_3$C$_2$ (1.0 wt.%), and (c) Ti$_3$C$_2$ ETLs under dark, respectively.

The electron mobilities of ETLs were recorded by the $J-V$ curves of electron-only device (ITO/TiO$_2$/ETL/BCP/Ag) under dark, and were calculated using the following equation \(^{S1}\):

$$J = 9\varepsilon_0\varepsilon_r\mu(V - V_{bi} - V_r)^2/8L^3$$

Where μ represents electron mobility (cm2 V$^{-1}$ s$^{-1}$), J is the current density (mA cm$^{-2}$), ε_0 is the permittivity of free space (mA s V$^{-1}$ cm$^{-1}$), ε_r is the dielectric constant of ETLs (assumed as 3), V is the applied voltage (V), V_r is the voltage drop (V) due to the series resistance and contact resistance across the electrodes, V_{bi} is the built-in voltage (V), $V-V_{bi}-V_r$ is obtained through a slope in the double log plot equals to 2, and L represents the thickness of ETLs film (cm).

Table S2. Fitting parameters for EIS data shown in Figure 5d.

<table>
<thead>
<tr>
<th>ETL</th>
<th>R_s (Ω)</th>
<th>R_{rec} (Ω)</th>
<th>C (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$</td>
<td>50.54</td>
<td>381.8</td>
<td>6.439E-9</td>
</tr>
<tr>
<td>SnO$_2$-Ti$_3$C$_2$ (1.0 wt.%)</td>
<td>46.16</td>
<td>215.6</td>
<td>5.631E-8</td>
</tr>
<tr>
<td>Ti$_3$C$_2$</td>
<td>44.29</td>
<td>197.1</td>
<td>9.862E-9</td>
</tr>
</tbody>
</table>
Figure S8. Stabilities of the SnO$_2^-$, SnO$_2$–Ti$_3$C$_2$ (1.0 wt.%)- and Ti$_3$C$_2$- based PSC devices exposed to ambient air without encapsulation.

Reference