Supporting Information

A Li⁺ Conductive Metal Organic Framework Electrolyte Boosts the High-Temperature Performance of Dendrite-Free Lithium Batteries

Nan Chen a,†, Yuejiao Li a,†, Yujuan Dai a, Wenjie Qu a, Yi Xing a, Yusheng Ye a, Ziyue Wen a, Cui Guo a, Feng Wu a,b, Renjie Chen a,b

a School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
b Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China.
†These authors contributed equally to this work and should be considered co-first authors.
* Corresponding Author, E-mail: chenrj@bit.edu.cn

Experimental Section

Materials: Reagents included Co(NO₃)₂·6H₂O (99.99%, J&K Chemicals, China), anhydrous methanol (99.9%, Aladdin, China), 2-methyl imidazole (99%, J&K Chemicals, China), N-propyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([Py13][TFSI], >99%, Shanghai Cheng Jie, China), and lithium bis(trifluoromethylsulfonyl) imide (LiTFSI, >99%, 3M, USA, dried at 80 °C under vacuum for 48 h and subsequently placed in a glove box). Other materials were purchased and used without further purification.

Synthesis: ZIF-67 was prepared by a melt-stirring method. Co(NO₃)₂·6H₂O (8.22 g) and 2-methyl imidazole (18.5 g) were dissolved separately in 400 mL quantities of anhydrous methanol, after which the two solutions were mixed using a peristaltic pump at a flow rate of 100 mL·min⁻¹. During this process, the color of the Co(NO₃)₂·6H₂O solution changed from red to purple. The solution was allowed to sit overnight at room temperature (25 °C) and a purple solid precipitate was obtained. After centrifugation at 5 °C and drying at 60 °C for 24 h, the ZIF-67 was collected. The ionic liquid electrolyte (ILE) was obtained by mixing [Py13][TFSI] with LiTFSI in a glove box. The ILE@MOF electrolytes were prepared by high energy ball milling. In this process, the desired amounts of ZIF-67 and ILE were combined at a 2:3 mass ratio in a zirconia vial and subjected to high energy ball milling for 1 h in an Ar-filled dry box at a rate of 300 r·min⁻¹. The resulting ILE@MOF was rolled into a 50-μm-thick film and cut into free-standing pieces to allow for electrochemical measurements.

Characterization and instruments: The morphologies and microstructural features of the materials were examined using scanning electron microscopy (SEM; FEI Quanta 600). Surface areas were determined by nitrogen gas absorption in conjunction with the Brunauer–Emmett–Teller (BET) method, using an Autosorb-iQ2-MP analyzer. X-Ray powder diffraction (XRD) was performed over the 20 range from 5° to 90° at a scanning rate of 2°·min⁻¹ with an X-ray diffractometer (Rigaku, Japanese), employing Cu-Kα radiation at 40 kV and 40 mA. Thermogravimetric analysis (TGA) was carried out under an Ar flow from ambient to 700 °C at a heating rate of 10 °C·min⁻¹ using a Netzsch TG209F1 analyzer. Fourier Transform
infrared spectroscopy (FTIR) was performed with a Nicolet 6700 FTIR spectrometer over the wavelength range of 400–4000 cm\(^{-1}\) and at a resolution of 4 cm\(^{-1}\). Flammability tests of the ILE@MOF were carried out using an electronic Bunsen burner. In these trials, the ILE@MOF electrolyte was placed in the middle of a Petri dish and heated directly with the Bunsen burner. ESCALAB 250Xi was used to execute XPS. Bruker AV 300 was used to execute solid-state NMR.

Electrochemical measurements: The ionic conductivity of the ILE@MOF was measured by electrochemical impedance spectroscopy (CHI660D, China) at various temperatures within the range from -10 to 80 °C and in the frequency range from 10 to 10\(^5\) Hz using an SS/ILE@MOF/SS cell, where SS is stainless steel. The electrochemical anodic stability of the ILE@MOF was assessed by linear sweep voltammetry (LSV) at room temperature, employing a CHI660D workstation at a scan rate of 0.1 mV·s\(^{-1}\) in conjunction with a Li/ILE@MOF/SS cell. The electrochemical cathodic stability of the ILE@MOF was evaluated by acquiring cyclic voltammograms (CV) at a scan rate of 0.1 mV·s\(^{-1}\) using the Li/ILE@MOF/SS cell. Li/ILE@MOF/Li symmetric cells were employed during interface stability trials and Li stripping/plating tests. Li/ILE/Li symmetric cells were used for control experiments, with 1 M LiTFSI as the electrolyte and a Celgard separator. Li metal electrodes were collected after stripping/plating tests and were washed with methyl ethyl carbonate in an Ar-filled glove box prior to SEM analysis.

Assembly and performance testing of LMBs: Electrodes were fabricated by mixing 80 wt% electrode material (LiFePO\(_4\), LiNi\(_{0.33}\)Mn\(_{0.33}\)Co\(_{0.33}\)O\(_2\), LiNi\(_{0.8}\)Mn\(_{0.1}\)Co\(_{0.1}\)O\(_2\) or Li\(_4\)Ti\(_5\)O\(_12\)), 10 wt% acetylene black and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) to form a viscous slurry that was then cast onto Al foil. The electrodes were heated at 80 °C for 24 h to evaporate the residual solvent then were cut into circular discs with a diameter of 11 mm. The average loading of LiFePO\(_4\) was approximately 4.2 mg·cm\(^{-2}\), corresponding to 0.7 mAh·cm\(^{-2}\) based on the theoretical capacity of LiFePO\(_4\) (170 mAh·g\(^{-1}\)). The average loadings of the LiNi\(_{0.33}\)Mn\(_{0.33}\)Co\(_{0.33}\)O\(_2\), LiNi\(_{0.8}\)Mn\(_{0.1}\)Co\(_{0.1}\)O\(_2\) and Li\(_4\)Ti\(_5\)O\(_12\) were 3.7, approximately 4.0 and 3.9 mg·cm\(^{-2}\). LMBs were prepared in an Ar-filled glove box by placing the electrodes, ILE@MOF and Li metal in a CR2032 button cell to form a cell without any separator. The charge/discharge cycling of LMBs was performed using a Land instrument. The Li/LiFePO\(_4\) cells were discharged between 2.7 and 4.2 V at 0.1 C (1.0 C=170 mA·g\(^{-1}\)) at 60 °C. The Li/LiNi\(_{0.33}\)Mn\(_{0.33}\)Co\(_{0.33}\)O\(_2\) cells were charged/discharged between 2.8 and 4.2 V at 2.0 C (1.0 C=140 mA·g\(^{-1}\)) at 60, 90, 120 and 150 °C. The Li/LiNi\(_{0.8}\)Mn\(_{0.1}\)Co\(_{0.1}\)O\(_2\) cells were charged/discharged between 2.7 and 4.3 V at 2.0 C (1.0 C=150 mA·g\(^{-1}\)) at 150 °C. The Li/Li\(_4\)Ti\(_5\)O\(_12\) cells were charged/discharged between 1.0 and 2.5 V at 1.0 C (1.0 C=170 mA·g\(^{-1}\)) at 150 °C. The Li metal electrode, ILE@MOF electrolyte and cathode electrode were washed with methyl ethyl carbonate and stored in an Ar-filled glove box for SEM analysis. Electrochemical impedance spectroscopy was performed with a CHI660D apparatus at various temperatures. Electrochemical stability data were obtained from CV results acquired with a CHI660D workstation at a scan rate of 0.1 mV·s\(^{-1}\).
Figure S1. XRD pattern of MOF, ILE@MOF electrolyte, and ILE@MOF after wash with acetonitrile to removal of the ILE.

Figure S2. FTIR spectra of MOF, ILE@MOF and ILE.
Figure S3 7Li NMR spectra for ILE and ILE@MOF.

Figure S4 a) SEM images of a fresh Li metal. b) SEM images of Li metal surface in the Li/ILE@MOF/Li cell before cycling.
Figure S5 a) Voltage profiles for Li/ILE@MOF/Li cell cycling at a current density of 0.1 mA·cm$^{-2}$ at 60 °C. Each cycle is set to be 10 h. b) Voltage profiles for Li/ILE /Li cell cycling at a current density of 0.1 mA·cm$^{-2}$ at 60 °C. Each cycle is set to be 10 h.

Figure S6 f) SEM morphology for Li anode in Li/ILE /Li cell after 1000 h cycling at 0.1 mA·cm$^{-2}$ at 60 °C.
Figure S7 Voltage profiles for Li/ILE@MOF/Li cell cycling at a current density of 0.5 mA·cm⁻² at 120 °C. Each cycle is set to be 2 h.
Figure S8 a) Co 2P XPS spectra for the thin particles layer of Li metal after 100 h stripping/plating at 150 °C. b) Co 2P XPS spectra of fresh ILE@MOF electrolyte.

Figure S9 Cycle performance of the Li/LiFePO₄ cells using the ILE@MOF electrolyte at 60 °C.
Figure S10 Galvanostatic charge/discharge plots of Li/LiFePO₄ cell using the ILE@MOF electrolyte.

Figure S11 Cyclic voltammograms of the Li/LiFePO₄ cell using ILE@MOF electrolyte.
Figure S12 Cyclic voltammograms of the Li/LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ cell using ILE@MOF electrolyte.

Figure S13 Electrochemical impedance spectra (EIS) of Li/LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ cell using ILE@MOF electrolyte at 60, 90, 120, and 150 °C.
Figure S14 SEM images of LiNi_{0.33}Mn_{0.33}Co_{0.33}O_{2} electrode surface after initial discharged at a) 90 °C and b) 120 °C.

Figure S15 SEM images of dense MOF on the surface of cycled LiNi_{0.33}Mn_{0.33}Co_{0.33}O_{2} electrode.

Figure S16 The voltage profiles of Li/ILE@MOF/Li_{4}Ti_{5}O_{12} cell at rate of 0.1 C and at room temperature.
Figure S17 Cycling performances of Li/Li$_4$Ti$_5$O$_{12}$ cell using the ILE@MOF electrolyte at a current density of 1.0 C at 150 °C.
The BET result revealed that the specific surface of MOF is 1352.1974 m2/g, and the specific surface of ILE@MOF decreases from 1791.88 m2/g to 5.26 m2/g by introducing of ILE.

Table S2 Summarized the fundamental security information of different electrolytes

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Thermal stability</th>
<th>Electrode</th>
<th>Test temperature</th>
<th>Cycle performance (mAh·g$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILE@MOF</td>
<td>325 °C</td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>150 °C, 150 °C, 150 °C</td>
<td>143.5 at 2.0 C, 137.3 at 2.0 C, ~165 at 1.0 C</td>
<td>Our work</td>
</tr>
<tr>
<td>Liquid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M LiPF$_6$-EC/EMC/DMC</td>
<td>40 °C</td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>25 °C</td>
<td>190 at 0.1 C</td>
<td>[2]</td>
</tr>
<tr>
<td>LiTFSI/[EMIm][FSI]</td>
<td>220 °C</td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>RT</td>
<td>163 at 1.0 C</td>
<td>[3]</td>
</tr>
<tr>
<td>1M LiPF$_6$-EC/DMC/EMC+PP13TFSI</td>
<td>100 °C</td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>RT</td>
<td>230 at 0.1 C</td>
<td>[4]</td>
</tr>
<tr>
<td>LiTFSI-EC/DMC+[Py14][TFSI]</td>
<td>100 °C</td>
<td>LiFePO$_4$</td>
<td>RT</td>
<td>150 at 0.1 C</td>
<td>[5]</td>
</tr>
<tr>
<td>Ionogel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h-BN/[PP13][TFSI]/LiTFSI</td>
<td>-</td>
<td>Li$_4$Ti$_3$O$_12$</td>
<td>150 °C</td>
<td>~145 at 0.5 C</td>
<td>[6]</td>
</tr>
<tr>
<td>Clay/[PP13][TFSI]/LiTFSI</td>
<td>370 °C</td>
<td>Li$_4$Ti$_3$O$_12$</td>
<td>120 °C</td>
<td>~60 at 1/3 C</td>
<td>[7]</td>
</tr>
<tr>
<td>SiO$_2$/[BMI][TFSI]/LiTFSI</td>
<td>390 °C</td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>30 °C</td>
<td>~149 at 0.1 C</td>
<td>[8]</td>
</tr>
<tr>
<td>TiO$_2$/[Py13][TFSI]/LiTFSI</td>
<td>375 °C</td>
<td>LiNi${0.33}$Mn${0.33}$Co$_{0.33}$O$_2$</td>
<td>RT</td>
<td>120 at 0.1 C</td>
<td>[9]</td>
</tr>
<tr>
<td>SiO$_2$-PP-TFSI/PC/1M LiTFSI</td>
<td>250 °C</td>
<td>Li$_4$Ti$_3$O$_12$</td>
<td>RT</td>
<td>130 at 1.0 C</td>
<td>[10]</td>
</tr>
<tr>
<td>Gel polymer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVdF/(VC-VAc)-1M LiPF$_6$-EC/EMC/DMC</td>
<td>240 °C</td>
<td>LiNi${0.33}$Mn${1.5}$O$_4$</td>
<td>RT</td>
<td>127 at 0.5 C</td>
<td>[11]</td>
</tr>
<tr>
<td>PEO–LiTFSI–EMIMTFSI</td>
<td>310 °C</td>
<td>LiMn$_2$O$_4$</td>
<td>RT</td>
<td>120 at 0.1 C</td>
<td>[12]</td>
</tr>
<tr>
<td>LiTFSI-[PP14][TFSI]–P(VdF-HFP)</td>
<td>150 °C</td>
<td>LiFePO$_4$</td>
<td>60 °C</td>
<td>131 at 1.0 C</td>
<td>[13]</td>
</tr>
</tbody>
</table>

RT: Room Temperature
References

