Supporting Information for

"AIE+ESIPT" ratiometric fluorescent probe for monitoring sulfur dioxide with distinct ratiometric fluorescence signals in mammalian cells, mouse embryonic fibroblast and zebrafish

Yong Liu^{#a}, Jing Nie^{#b}, Jie Niu^a, Weishan Wang^a, and Weiying Lin^{a,*}

^a Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P.R. China.
^b School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, P.R. China.
E-mail: weiyinglin2013@163.com

#Liu and Nie made equal contributions to this work.

Table of contents

- 1. Synthesis
- 2. Table S1.
- 3. Figure S1.
- 4. Table S2.
- 5. Figure S2.
- 6. Figure S3.
- 7. Table S3.
- 8. Figure S4.
- 9. Figure S5.
- 10. Figure S6.
- 11. Figure S7.
- 12. Figure S8.
- 13. Figure S9.
- 14. Spectral Characterization
- 15. References

1. Synthesis

The compound **TPE-TE** was synthesized following the synthetic routine in Scheme S1.

Scheme S1. The synthetic routes of the compound TPE-TE.

2. <u>Table S1.</u>

Table S1. Properties of the representative SO₂ probes developed and the **TPE-TE** reported in this work.

Ref.	Core structure	Combination of an ESIPT Mechanism and the Aggregate Fluorescence Method	Ratiometric imaging	Detecting environment In vitro	Distinguishing imaging capacity of different cells lines	Application
This wor k	TPE-TE	Yes	Yes	PBS buffer solution (pH=7.4)	Yes	Clearly discriminating and monitoring sulfur dioxide in mammalian cells, mouse fibroblast predispose cells and zebrafish
1.	1	No	No	H ₂ O-DMSO (9:1, v/v)	No	Ratiometric Sensing sulfite in vitro
2.	. 1	No	No	H ₂ O-CH ₃ CN (98:2, v/v)	No	Sensing sulfite in vitro
3.	Anthracene– aldehyde dyad	No	No	HEPES-DMSO (98:2, v/v)	No	A fast-responding turn-on sensor for sensitive and selective detection of sulfite anions
4.	- 1	No	No	H ₂ O/CH ₃ CN (1:1, v/v).	No	Ratiometric Sensing sulfite in vitro
5.	: Lev-Rhol	No	No	HEPES buffer solution (pH=7.5)	No	A continuous spectrophotometric assay for adenosine 50-phosphosulfate reductase activity with sulfite-selective probes
6.	TSP1-3	No	No	PBS buffer solution (pH=7.4)	No	Colorimetric and ratiometric fluorescent detection of sulfite in water

7.	1	No	No	HEPES-DMF (4:1, v/v)	No	A real-time colorimetric and ratiometric fluorescent
8.	C1	No	No	THF–H ₂ O (1/99, v/v)	No	probe for sulfite Detection of hydrogen sulfite in HeLa cells with turn-on fluorescent methods.
9.	P-1	No	No	THF–H ₂ O (3:7, v/v)	No	Detection of hydrogen sulfite in HeLa cells
10.	1	No	No	H ₂ O-CH ₃ CN (99:1, v/v)	No	High selectivity and sensitivity for sulfite detection.
11.	m-PSP	No	No	PBS buffer solution (pH=7.4)	No	Colorimetric and fluorescent determination of sulfide and sulfite
12.	1 and 2	No	No	HEPES buffer solution (pH=7.5)	No	Colorimetric and ratiometric sensing of SO ₂ derivatives in living cells
13.	1	No	No	PBS buffer solution (pH=7.4)	No	Rapid Detection of Bisulfite through 1,4- Addition Reaction in Aqueous Solution
14.	2	No	Yes	PBS buffer solution (pH=7.4)	No	Ratiometric sensing of sulfite in living cells
15.	. 1	No	No	H ₂ O-DMSO (9:1, v/v)	No	A new fluorescent turn-on probe for highly sensitive and selective detection of sulfite and bisulfite
16.	1	No	No	PBS buffer (pH 7.4, 10.0 mM, 1 mM CTAB)	No	A ratiometric fluorescent probe for rapid, sensitive and selective detection of sulfur dioxide
17.	TP-Mito/Ratio- SO2	No	Yes	PBS-EtOH (4:1, v/v)	No	Two-photon fluorescent probe for ratiometric visualization of endogenous sulfur dioxide derivatives in mitochondria of living cells and tissues
18.	НСу-D	No	Yes	PBS-DMF (7:3, v/v)	No	Ratiometric detection of endogenous sulfur dioxide derivatives in cancer cells
19.	CZ-1d	No	No	PBS-DMF (7:3, v/v)	No	Colorimetric and ratiometric fluorescent probe for biological SO ₂ derivatives in living cells†
20.	АРСТ	No	No	Tris-DMSO (3:7, v/v)	No	Detection of bisulfite in living cells
21.	CI-2	No	No	PBS buffer solution (pH=7.4)	No	Monitor successfully the concentration change of endogenously generated

						SO2 derivatives in living cells.
22.	NDB-Id	No	No	PBS buffer solution (pH=7.4)	No	Imaging sulfur dioxide derivatives in the mitochondria of living cells
23.	BIFS	No	No	Glycerol/PBS solution = 4/6 (pH 7.40)	No	Rapid and specific detection of trace biological SO2 derivatives and bio- imaging applications
24.	BSP1 and BSP2	No	No	PBS-CTAB	No	Colorimetric/ratiome tric fluorescence probes for sulfite in aqueous solution and in living cells
25.	L	No	No	In aqueous solution	No	Real-time sensing of SO ₃ ²⁻ and SO ₄ ²⁻ /HSO ₄ ⁻ in aqueous medium and live cells.

3. <u>Fig. S1.</u>

(A)

TPE

Fig. S1 (A) Structure of the AIE material TPE; (B) Detection mechanism of TPE-TE to SO₂.

4. <u>Table S2.</u>

Slovents	^a nm	$b \square \square nm$	Stokes shifts	с		
CH ₃ CN	306	420	114	0.38		
DMF	303	422	119	1.08		
DMSO	306	417	111	0.34		
MeOH	302	426	124	0.87		
CH_2Cl_2	301	422	121	0.40		
H ₂ O	317	465	158	23.0		

The photophysical properties of TPE-TE.

^aMaximum absorption wavelength (nm). ^bMaximum emission wavelength (nm). c is fluorescence quantum yield (error limit: 8%) determined by using fluorescein (Φ =0.95) in aqueous NaOH (pH = 13) as the standard.

5. <u>Fig. S2</u>

Fig. S2 (A) The UV–vis absorption and (B) fluorescence spectra of TPE-TE in aqueous solutions and organic solvents. [TPE-TE] = $5.0 \mu M$.

6. <u>Fig. S3</u>

Fig. S3 The ¹H NMR spectrum of the hydroxy peak of **TPE-TE** in the absence and presence of SO₂ (50 equiv) in d_6 -DMSO/D₂O (4:1).

7. <u>Table S3.</u>

Table S3. Cytotoxicity data of the probe TPE-TE.

Incubate						
$concentration(\mu M)$	0	1	5	10	20	30
(% cell survival)	100±4	100±4	95±4	89±4	80±4	83±4

8. <u>Fig. S4</u>

Fig. S4 The first line (parallel): (A-C): HepG2 cells were incubated with TPE-TE (5 μ M) for 30 min; The second line (D-F): HepG2 cells were incubated with TPE-TE (5 μ M) for 30 min, and then with 500 μ M GSH and 250 μ M Na₂S₂O₃ for 0.5 h. (G): Fluorescent intensity of TPE-TE untreated and treated with GSH and Na₂S₂O₃ in blue channel and red channel. Images were acquired from 425 to 475 nm for blue fluorescence, and from 570 to 620 nm for red fluorescence. $\lambda_{ex} = 405$ nm. Scale bar = 20 μ m.

9. <u>Fig. S5.</u>

Fig. S5. The first line (parallel): (A-C): HeLa cells were incubated with TPE-TE (5 μ M) for 30 min; The second line (D-F): HeLa cells were incubated with TPE-TE (5 μ M) for 30 min, and then with 500 μ M GSH and 250 μ M Na₂S₂O₃ for 0.5 h. (G): Fluorescent intensity of TPE-TE untreated and treated with GSH and Na₂S₂O₃ in blue channel and red channel. Images were acquired from 425 to 475 nm for blue fluorescence, and from 570 to 620 nm for red fluorescence. $\lambda_{ex} = 405$ nm. Scale bar = 20 μ m.

10. Fig. S6.

Fig. S6 The first line (parallel): (A-C): 3T3 cells were incubated with TPE-TE (5 μ M) for 30 min; The second line (D-F): 3T3 cells were incubated with TPE-TE (5 μ M) for 30 min, and then with 500 μ M GSH and 250 μ M Na₂S₂O₃ for 0.5 h. (G): Fluorescent intensity of TPE-TE untreated and treated with GSH and Na₂S₂O₃ in blue channel and red channel. Images were acquired from 425 to 475 nm for blue fluorescence, and from 570 to 620 nm for red fluorescence. $\lambda_{ex} = 405$ nm. Scale bar = 20 μ m.

11. Fig. S7

Fig.7 *In situ* fluorescence spectra of the TPE-TE (5 μ M) HepG2 and 3T3 cells with excitation at 405 nm.

12. Fig. S8

Fig. S8 (A) Fluorescence images (the blue channel and red channel) of HepG2 cells incubated with were incubated with TPE-TE (5 μ M), 500 μ M GSH and 250 μ M Na₂S₂O₃ acquired at different times under successive excitation. (B) Mean intensities of the cells incubated in the red channel under successive excitation at different times. Images were acquired from 425 to 475 nm for blue fluorescence, and from 570 to 620 nm for red fluorescence. $\lambda_{ex} = 405$ nm. Scale bar = 20 μ m.

13. Fig. S9

Fig. S9 Cells image of SO₂ in HeLa cells untreated and treated with Na₂SO₃; (A-C) Images of HeLa cells untreated with Na₂SO₃; (B-F) Images of HeLa cells treated with Na₂SO₃ in the blue emission channels ($\lambda_{ex} = 405 \text{ nm}$, $\lambda_{em} = 425-475 \text{ nm}$); (G) Ratiometric Images of HeLa cells in the blue and red emission channels. Scale bar = 20 µm.

14. Spectral Characterization

Fig. S10 ¹H NMR spectrum of the compound TPE-TEO.

Fig. S14 H RMS spectrum of TPE-TE.

15. References

- 1. Y. Sun, C. Zhong, R. Gong, H. Mu and E. Fu, J. Org. Chem. 2009, 74, 7943.
- 2. M. G. Choi, J. Hwang, S. Eor and S. K. Chang, Org. Lett., 2010, 12, 5624.
- 3. C. Yu, M. Luo, F. Zeng and S. Wu, Anal. Methods., 2012, 4, 2638.
- 4. S. Chen, P. Hou, J. Wang and X. Song, RSC Adv., 2012, 2, 10869.
- 5. H. Paritala and K. S. Carroll, Anal. Biochem., 2013, 440, 32.
- 6. H. Tian, J. Qian, Q. Sun, H. Bai and W. Zhang, Anal. Chim. Acta., 2013, 788, 165.
- 7. M. Y. Wu, T. He, K. Li, M. B. Wu, Z. Huang and X. Q. Yu, Analyst, 2013, 138, 3018.
- 8. X. Cheng, H. Jia, J. Feng, J. Qin and Z. Li, J. Mater. Chem. B., 2013, 1, 4110.
- 9. X. Cheng, H. Jia, J. Feng, J. Qin and Z. Li, Sensor Actuat. B-Chem., 2013, 184, 274.
- X. Ma, C. Liu, Q. Shan, G. Wei, D. Wei and Y. Du, Sensor Actuat. B-Chem., 2013, 188, 1196.
- 11. X. Pei, H. Tian, W. Zhang, A. M. Brouwer and J. Qian, Analyst, 2014, 139, 5290.
- 12. M. Y. Wu, K. Li, C. Y. Li, J. T. Hou and X. Q. Yu, Chem. Commun., 2014, 50, 183.
- 13. Y. Sun, D. Zhao, S. Fan, L. Duan and R. Li, J. Agric. Food Chem., 2014, 62, 3405.
- 14. L. Tan, W. Lin, S. Zhu, L. Yuan and K. Zheng, Org. Biomol. Chem., 2014, 12, 4637.
- 15. C. Wang, S. Feng, L. Wu, S. Yan, C. Zhong, P. Guo and X. Zhou, *Sensor Actuat. B-Chem.*, 2014, **190**, 792.
- X. Liu, Q. Yang, W. Chen, L. Mo, S. Chen, J. Kang and X. Song, Org. Biomol. Chem., 2015, 13, 8663.
- 17. X. Yang, Y. Zhou, X. Zhang, S. Yang, Y. Chen, J. Guo and R. Yang, Chem. Commun.,

2016, 52, 10289.

- D. P. Li, Z. Y. Wang, X. J. Cao, J. Cui, X. Wang, H. Z. Cui and B. X. Zhao, *Chem. Commun.*, 2016, **52**, 2760.
- Y. Liu, K. Li, M. Y. Wu, Y. H. Liu, Y. M. Xie and X. Q. Yu, *Chem. Commun.*, 2015, 51, 10236.
- 20. Z. Chen, F. Chen, Y. Sun, H. Liu, H. He, X. Zhang and S. Wang, RSC Adv., 2017, 7, 2573.
- 21. Y. Liu, K. Li, K. X. Xie, L. L. Li, K. K. Yu, X. Wang and X. Q. Yu, *Chem. Commun.*, 2016, **52**, 3430.
- Y. Wang, Q. Meng, R. Zhang, H. Jia, X. Zhang and Z. Zhang, Org. Biomol. Chem., 2017, 15, 2734.
- 23. L. Zhu, J. Xu, Z. Sun, B. Fu, C. Qin, L. Zeng and X. Hu, Chem. Commun., 2015, 51, 1154.
- 24. S. Liu, L. Song, Q. Sun, Z. Chen, Y. Ge, W. Zhang and J. Qian, *RSC Adv.*, 2015, 5, 91863.
- 25. S. Samanta, P. Dey, A. Ramesh and G. Das, Chem. Commun., 2016, 52, 10381.