Electronic Supplementary Information

Biodegradable crosslinked polyesters derived from thiomalic acid and S-nitrosothiol analogues for nitric oxide release

Janet P. Yapor, a Bella H. Neufeld, a Jesus B. Tapia, a Melissa M. Reynolds* a, b

a Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
b School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
* Corresponding author. E-mail: Melissa.Reynolds@colostate.edu
Table of Contents

Figure S1. ¹H NMR spectra of poly(thiomalic-co-maleic acid-co-1,8-octanediol) (PTMO) 1
Figure S2. ¹H NMR spectrum of poly(thiomalic-co-citric acid-co-1,8-octanediol) (PTCO) 1
Figure S3. ¹H NMR spectrum of poly(thiomalic acid-co-1,8-octanediol) (PTO) 2
Figure S4. ¹³C NMR spectrum of PTMO .. 2
Figure S5. ¹³C NMR spectrum of PTCO .. 3
Figure S6. ¹³C NMR spectrum of PTO .. 3
Figure S7. COSY 2D NMR spectrum of PTMO .. 4
Figure S8. COSY 2D NMR spectrum of PTCO .. 4
Figure S9. COSY 2D NMR spectrum of PTO ... 5
Figure S10. HSQC 2D NMR spectrum of PTMO .. 5
Figure S11. HSQC 2D NMR spectrum of PTCO .. 6
Figure S12. HSQC 2D NMR spectrum of PTO .. 6
Figure S13. FTIR-ATR spectra of PTMO and PTMO–NO ... 7
Figure S14. FTIR-ATR spectra of PTCO and PTCO–NO ... 7
Figure S15. FTIR-ATR spectra of PTO and PTO–NO .. 7
Figure S16. UV-Vis spectrum of PTMO–NO .. 8
Figure S17. UV-Vis spectrum of PTCO–NO ... 8
Figure S18. UV-Vis spectrum of PTO–NO ... 9
Figure S19. Structures and names of degradation products identified using mass spectrometry ... 9–11

Table S1. Viable bacteria (CFU/mL) obtained after 6 and 24 h exposure to S-nitrosated polymers (n = 6) ... 11
Figure S1. Selected portion (A) and complete 1H NMR spectrum of PTMO (B). 1H NMR δ/ppm (400 MHz, DMSO-d_6): 12.73 (−CO$_2$H), 6.67–6.73 (−HC=CH−), 3.94–4.07 (−OC$_2$H$_2$−), 3.72–3.89 (−S−CH−CO$_2$−), 3.32–3.35 (−CH$_2$OH), 2.58–2.91 (−CH$_2$CO$_2$−), 2.49 (DMSO), 1.52–1.60 (−CH$_2$−(CH$_2$)$_4$−CH$_2$−), 1.34–1.39 (−CH$_2$−CH$_2$OH), 1.24 (−(CH$_2$)$_4$−).

Figure S2. 1H NMR spectrum of PTCO. 1H NMR δ/ppm (400 MHz, DMSO-d_6): 5.56 (−C−OH), 3.93–4.07 (−OCH$_2$−), 3.58–3.69 (−S−CH−CO$_2$), 3.32–3.36 (−CH$_2$OH), 2.61–2.91 (−CH$_2$CO$_2$−), 2.49 (DMSO), 1.51–1.53 (−CH$_2$−(CH$_2$)$_4$−CH$_2$−), 1.36–1.39 (−CH$_2$−CH$_2$OH), 1.25 (−(CH$_2$)$_4$−).
Figure S3. 1H NMR spectrum of PTO. 1H NMR δ/ppm (400 MHz, DMSO-d$_6$): 3.94–4.06 (–OC$_2$H–), 3.66–3.70 (–S–CH–CO$_2$–), 2.71–2.91 (–CH$_2$CO$_2$–), 2.49 (DMSO), 1.57 (–CH–(CH$_2$)$_4$–CH$_2$–), 1.25–1.30 (–(CH$_2$)$_4$–).

Figure S4. 13C NMR spectrum of PTMO. 13C NMR δ/ppm (100 MHz, DMSO-d$_6$): 170.3–172.6 (–CO$_2$–), 130.4–133.6 (–H–C=CH–), 64.8–65.5 (–CH$_2$OH), 61.2 (–OCH$_2$–), 41.9–42.0 (–S–CH–CO$_2$–), 39.3–40.6 (DMSO), 35.9–37.1 (–CH$_2$CO$_2$–), 33.0 (–CH$_2$–CH$_2$OH), 29.0–29.3 (–(CH$_2$)$_2$–), 28.4–28.5 (–CH$_2$–(CH$_2$)$_4$–CH$_2$–), 25.7–25.9 (–(CH$_2$)$_2$–).
Figure S5. 13C NMR spectrum of PTCO. 13C NMR δ/ppm (100 MHz, DMSO–d$_6$): 169.6–174.9 (–CO$_2$–), 72.9–73.3 (–C–OH), 64.4–65.3 (–OCH$_2$–), 61.2 (–CH$_2$OH), 41.9–42.0 (–CH$_2$CO$_2$–), 39.3–40.6 (DMSO), 35.8–35.9 (–S–CH–CO$_2$–), 33.0 (–(CH$_2$)$_2$–), 28.4–28.5 (–CH$_2$–(CH$_2$)$_4$–CH$_2$–), 25.6–25.9 (–(CH$_2$)$_2$–).

Figure S6. 13C NMR spectrum of PTO. 13C NMR δ/ppm (100 MHz, DMSO–d$_6$): 170.4–173.7 (–CO$_2$–), 64.7–65.2 (–OCH$_2$–), 39.3–40.6 (DMSO), 39.8 (–CH$_2$CO$_2$–), 35.9–36.1 (–S–CH–CO$_2$–), 29.0 (–CH$_2$–(CH$_2$)$_4$–CH$_2$–), 28.4–28.5 (–(CH$_2$)$_2$–), 25.6–25.7 (–(CH$_2$)$_2$–).
Figure S7. COSY 2D NMR spectrum of PTMO.

Figure S8. COSY 2D NMR spectrum of PTCO.
Figure S9. COSY 2D NMR spectrum of PTO.

Figure S10. HSQC 2D NMR spectrum of PTMO.
Figure S11. HSQC 2D NMR spectrum of PTCO.

Figure S12. HSQC 2D NMR spectrum of PTO.
Figure S13. FTIR-ATR spectra of PTMO and PTMO–NO.

Figure S14. FTIR-ATR spectra of PTCO and PTCO–NO.

Figure S15. FTIR-ATR spectra of PTO and PTO–NO.
Figure S16. UV-Vis spectrum of PTMO–NO in DMSO. The spectrum depicts the characteristic transitions of S-nitrosothiols at 335 (π → π*) and 544 nm (η_N → π*).

Figure S17. UV-Vis spectrum of PTCO–NO in DMSO. The spectrum depicts the characteristic transitions of S-nitrosothiols at 331 (π → π*) and 544 nm (η_N → π*).
Figure S18. UV-Vis spectrum of PTO–NO in DMSO. The spectrum depicts the characteristic transitions of S-nitrosothiols at 333 (π → π*) and 540 nm (nN → π*).

PTMO-P1, PTCO-P1, PTO-P1⁺
4-((8-hydroxyoctyl)oxy)-4-oxobut-2-enoic acid

PTMO-P2, PTCO-P2, PTO-P2⁺
4-((8-hydroxyoctyl)oxy)-3-mercapto-4-oxobutanoic acid

PTMO-P3, PTO-P3⁺
4-((8-((3-carboxy-3-hydroxypropanoyl)oxy)octyl)oxy)-2-mercapto-4-oxobutanoic acid
PTMO-P4, PTO-P4*
2-hydroxy-4-((8-((4-((8-hydroxyoctyl)oxy)-3-mercapto-4-oxobutanooyl)oxy)octyl)oxy)-4-oxobutanoic acid

PTCO-P3
2-hydroxy-2-(2-((8-hydroxyoctyl)oxy)-2-oxoethyl)succinic acid

PTCO-P4
4-((8-((3-carboxy-2-mercaptopropanoyl)oxy)octyl)oxy)-2-mercapto-4-oxobutanoic acid

PTCO-P5
2-(2-((8-((3-carboxy-2-mercaptopropanoyl)oxy)octyl)oxy)-2-oxoethyl)-2-hydroxy succinic acid
Figure S19. Structures and names of degradation products identified using mass spectrometry. *Ions also found as byproducts from S-nitrosated polymers (PTMO–NO, PTCO–NO and PTO–NO). †Ions common to all polymers (PTMO, PTMO–NO, PTCO, PTCO–NO, PTO and PTO–NO) corresponding to dimers composed of the bonded monomers. ‡Ion only found as byproduct from the S-nitrosated polymer PTCO–NO.

Table S1. Viable bacteria (CFU/mL) obtained after 6 and 24 h exposure to S-nitrosated polymers. For all experiments, \(n \geq 6 \) and results are reported as the mean ± standard deviation.

<table>
<thead>
<tr>
<th>Viable Bacteria (CFU/mL)</th>
<th>6 h</th>
<th>24 h</th>
<th>6 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC(^a)</td>
<td>(8.0 ± 1.2) (\times) (10^8)</td>
<td>(5.6 ± 2.4) (\times) (10^8)</td>
<td>(9.1 ± 5.0) (\times) (10^7)</td>
<td>(1.1 ± 0.4) (\times) (10^9)</td>
</tr>
<tr>
<td>PTMO–NO (1a)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PTCO–NO (2a)</td>
<td>(5.2 ± 6.4) (\times) (10^6)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PTO–NO (3a)</td>
<td>(3.0 ± 1.4) (\times) (10^3)</td>
<td>(3.4 ± 3.7) (\times) (10^4)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\) Positive control (PC) represents the viable bacteria in the absence of polymer. A value of 1 represents the limit of detection for this technique.