Bioactive Silk Hydrogels with Tunable Mechanical Properties

Xue Wanga,1, Zhaozhao Dingb,1, Chen Wangc, Xiangdong Chena,*, Hui Xua,*, Qiang Lub,*, David L. Kaplanb

aDepartment of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China.

bNational Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science, Soochow University, Suzhou 215123, P. R. China.

cDepartment of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China.

dDepartment of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.

Xue Wang and Zhaozhao Ding are contributed equally to this paper.

* Corresponding author:
Qiang Lu
199 Renai Road, Suzhou, P. R. China
Telephone: +86051267061649, Fax: 051267061649.
Email: Lvqiang78@suda.edu.cn.

Xiangdong Chen
639 Zhizaoju Road, Shanghai, P. R. China
Telephone: +8602123271699, Fax: 02123271699.
Email: xdchen@medmail.com.cn

Hui Xu
639 Zhizaoju Road, Shanghai, P. R. China
Telephone: +8602123271699, Fax: 02123271699.
Email: xusunan@hotmail.com

ORCID
Qiang Lu: 0000-0003-4889-5299
David L. Kaplan: 0000-0002-9245-7774
Figure S-1. The phase changes of regenerated silk fibroin (RSF) and silk fibroin nanofiber (SNF) solutions after the addition of HRP and H$_2$O$_2$. No crosslinking happened for the SNF with enzyme and peroxide but in the absence of the RSF.
Figure S-2. The macrograph of silk fibroin hydrogels with different contents of SNF.

The samples were as follows: (a) R100, pure RSF hydrogel; (b) R12-SN1, the ratio of RSF and SNF was 12:1; (c) R6-SN1, the ratio of RSF and SNF was 6:1; (d) R4-SN1, the ratio of RSF and SNF was 4:1 (e) R3-SN1, the ratio of RSF and SNF was 3:1.