Upconversion Nanotheranostic Agent Activated by Hypoxia Combined with NIR Irradiation for Selective Hypoxia Imaging and Tumour Therapy

Hongliang Li,† Weiyan Lei,† Jianong Wu, Shenghui Li, Guoqiang Zhou,*, Dandan Liu, Xinjian Yang, Shuxiang Wang,*, Zhenhua Li, and Jinchao Zhang*
College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China

zhougq1982@163.com, (tel)+86 312 507 9359, (fax) +86 312 507 9359; wsx@hbu.edu.cn; (tel) +86 312 507 9359, (fax) +86 312 507 9359; jczhang6970@163.com, (tel) +86 312 507 9525; (fax) +86 312 507 9525

Supplementary Information
1. The characterization of FDU-CA\(_{2}\)-NO\(_2\) and UCNP-CA\(_{2}\)-FDU/NO\(_2\)

2-(4-Nitrobenzyloxy)-4-(prop-2-ynyloxy)benzaldehyde (2): A yellow solid, Mp: 163.3-164.8 °C; \(^1H\)-NMR (600 MHz, DMSO-\(d_6\)): \(\delta\) 10.31 (s, 1 H), 8.28 (d, 2 H, \(J = 8.4\) Hz), 7.80 (d, 1 H, \(J = 2.4\) Hz), 7.73 (d, 1 H, \(J = 8.4\) Hz), 6.86 (d, 1 H, \(J = 2.4\) Hz), 6.76 (d, 1 H, \(J = 8.4\) Hz), 5.46 (s, 2 H), 4.94 (d, 2 H, \(J = 2.4\) Hz), 3.64 (s, 1 H). \(^{13}C\) NMR (DMSO-\(d_6\), 150 MHz, ppm): \(\delta\) 187.42, 163.66, 161.66, 147.10, 144.15, 130.18, 128.19, 123.68, 118.99, 107.70, 100.66, 78.90, 78.38, 68.67, 56.04. HRMS (ESI) \(m/z\) calcd for C\(_{17}\)H\(_{13}\)NO\(_5\) [M+H]\(^+\) 312.08665, found 312.08673.

(E)-\(\text{tert}\)-Butyl-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl) acrylate (4): A white solid, Mp: 145.7-148.3 °C; \(^1H\)-NMR (DMSO-\(d_6\), 600 MHz, ppm): \(\delta\) 8.29 (d, 2 H, \(J = 9.0\) Hz), 7.83 (d, 1 H, \(J = 15.6\) Hz), 7.74 (d, 2 H, \(J = 9.0\) Hz), 7.72 (d, 1 H, \(J = 2.4\) Hz), 6.76 (d, 1 H, \(J = 2.4\) Hz), 6.67 (dd, 1 H, \(J = 9.0, 2.4\) Hz), 6.42 (d, 1 H, \(J = 15.6\) Hz), 5.39 (s, 2 H), 4.86 (d, 2 H, \(J = 2.4\) Hz), 3.60 (s, 1 H), 1.47 (s, 9 H). \(^{13}C\) NMR (DMSO-\(d_6\), 150 MHz, ppm): \(\delta\) 166.00, 160.20, 157.53, 147.11, 144.40, 137.70, 129.67, 128.22, 123.67, 117.71, 116.37, 107.27, 100.73, 79.46, 78.74, 78.51, 68.64, 55.73, 27.81. HRMS (ESI) \(m/z\) calcd for C\(_{23}\)H\(_{23}\)NO\(_6\) [M+H]\(^+\) 410.15981, found 410.16003.

(E)-3-(2-(4-Nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl) acrylic acid (5): A white solid, Mp: 197.6-199.5 °C. \(^1H\)-NMR (DMSO-\(d_6\), 600 MHz, ppm): \(\delta\) 8.28 (d, 2 H, \(J = 8.4\) Hz), 7.73 (d, 2 H, \(J = 8.4\) Hz), 7.50 (d, 1 H, \(J = 16.0\) Hz), 7.47 (d, 1 H, \(J = 2.4\) Hz), 6.69 (d, 1 H, \(J = 16.0\) Hz), 6.60 (dd, 1 H, \(J = 8.8, 2.4\) Hz), 6.30 (d, 1 H, \(J = 15.6\) Hz), 5.34 (s, 2 H), 4.79 (d, 2 H, \(J = 2.4\) Hz), 3.56 (s, 1 H). \(^{13}C\) NMR (DMSO-\(d_6\), 150 MHz, ppm): \(\delta\) 167.99, 160.14, 157.54, 147.18, 144.35, 138.22, 128.39, 123.73, 117.22, 116.48, 107.29, 100.76, 78.76, 78.51, 68.64, 55.74. HRMS (ESI) \(m/z\) calcd for C\(_{19}\)H\(_{15}\)NO\(_6\) [M+H]\(^+\) 354.09721, found 354.09723.

FDU-CA\(_{2}\)-NO\(_2\): A white solid. Mp: 143.4-146.3 °C. \(^1H\) NMR (DMSO-\(d_6\), 600 MHz, ppm): \(\delta\) 11.88 (s, 1 H), 8.28 (d, 2 H, \(J = 8.7\) Hz), 7.92 (d, 1 H, \(J = 16.0\) Hz), 7.87 (d, 1 H, \(J = 6.8\) Hz), 7.75 (d, 1 H, \(J = 8.8\) Hz), 7.72 (d, 2 H, \(J = 8.7\) Hz), 6.77 (d, 1 H, \(J = 2.0\) Hz), 6.69 (dd, 1 H, \(J = 8.8, 2.0\) Hz), 6.60 (d, 1 H, \(J = 16.0\) Hz), 6.14 (t, 1 H, \(J = 6.4\) Hz), 5.51 (d, 1 H, \(J = 4.4\) Hz), 5.40 (d, 2 H, \(J = 3.2\) Hz), 4.87 (d, 2 H, \(J = 2.0\) Hz), 4.82 (d, 2 H, \(J = 8.4\) Hz), 3.57 (s, 1 H).
Hz), 4.40-4.28 (m, 3 H), 4.01 (s, 1 H), 3.61 (s, 1 H), 2.24-2.09 (m, 2 H). 13C NMR (DMSO-d6, 150 MHz, ppm):
δ 166.47, 160.54, 157.03, 157.03, 156.77, 148.86, 147.09, 144.29, 141.12, 139.43, 138.83, 130.21, 128.26,
124.53, 124.19, 123.71, 116.12, 115.53, 107.34, 100.73, 84.55, 83.97, 78.71, 78.59, 70.00, 68.65, 63.67,
55.77. HRMS (ESI) m/z calcd for C29H24N3F10 [M+H]+ 582.15185, found 582.15216.

7-Propargyloxycoumarin (CM): A white solid yield, Mp: 70.3-71.8 ºC. 1H NMR (CDCl3, 600 MHz, ppm): δ 7.64 (d, 1 H, J = 9.6 Hz), 7.41 (d, 1 H, J = 8.4 Hz), 6.94 (s, 1 H), 6.92 (d, 1 H, J = 8.4 Hz),
6.29 (d, 1 H, J = 9.6 Hz), 4.77 (d, 2 H, J = 2.4 Hz), 2.56 (s, 1 H). 13C NMR (CDCl3, 150 MHz, ppm): δ 160.98,
160.55, 155.66, 143.27, 128.84, 113.67, 113.20, 113.05, 102.16, 77.38, 76.57, 56.22. HRMS (ESI) m/z calcd for C12H8O3 [M+H]+ 201.05462, found 201.05461.

2. **The size of UCNP-CAEC-FDU/NO2 and UCNP analyzed by DLS and TEM**

The samples for TEM and DLS were prepared by dispersing UCNP-CAEC-FDU/NO2 (200 μg/mL) in PBS (25 mmol/L, pH 7.4) with intermittent ultrasonic by a needle type ultrasonic instrument. The samples of UCNP were dispersed in cyclohexane (20 μg/mL). The TEM sample was prepared by dropping on the surface of a copper grid and negative staining for 30 s by a droplet of phosphotungstic acid. The DLS of the samples were measured using a Nano-ZS system in disposable cuvettes.

3. **HPLC and HRMS analysis**

![HPLC profiles](image)

Figure S1. HPLC profiles of a) FDU; b) FDU-CAEC-NO2; c) CM; d) solution of FDU-CAEC-NO2 incubated with Na2S2O4 and then illuminated by UV light at 365 nm; e) UCNP-CAEC-FDU/NO2 incubated with Na2S2O4 and then illuminated by NIR light at 980 nm
Figure S2. HRMS of the solution of FDU-CA\textsubscript{F}-NO\textsubscript{2} incubated with Na\textsubscript{2}S\textsubscript{2}O\textsubscript{4} and then illuminated by UV-light at 365 nm.
Figure S3. HRMS of the mixture of UCNP-CA$_2$-FDU/NO$_2$ with Na$_2$S$_2$O$_4$ and then illuminated by NIR-light at 980 nm

4. NMR, IR and HRMS spectra

Figure S4. 1H NMR of 2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)benzaldehyde (2)
Figure S5. 13C NMR of 2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)benzaldehyde (2)

Figure S6. HRMS of 2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)benzaldehyde (2)
Figure S7. IR of 4-nitrobenzylxy-4-diethylaminobenzaldehyde (2)

Figure S8. 1H NMR of (E)-tert-butyl-3-(2-(4-nitrobenzylxy)-4-(prop-2-ynyloxy)phenyl)acrylate (4)
Figure S9. 13C NMR of (E)-tert-butyl-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl)acrylate (4)

Figure S10. HRMS of (E)-tert-butyl-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl)acrylate (4)
Figure S11. IR of (E)-tert-butyl-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl)acrylate (4)

Figure S12. 1H NMR of (E)-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl)acrylic acid (5)
Figure S13. 13C NMR of (E)-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl)acrylic acid (5)

Figure S14. HRMS of (E)-3-(2-(4-nitrobenzyloxy)-4-(prop-2-ynyloxy)phenyl)acrylic acid (5)
Figure S15. 1H NMR of FDU-CA$_E$-NO$_2$

Figure S16. 13C NMR of FDU-CA$_E$-NO$_2$
Figure S17. HRMS of FDU-CA\textsubscript{E}-NO\textsubscript{2}

Figure S18. IR of FDU-CA\textsubscript{E}-NO\textsubscript{2}
Figure S19. 1H NMR of CM

Figure S20. 13C NMR of CM
Figure S21. HRMS of CM

Figure S22. IR of CM
Figure S23. IR of UCNPs

Figure S24. IR of UCNP-CA-FDU/NO₂