Supporting information

A rhodamine-based fast and selective fluorescent probe for monitoring exogenous and endogenous nitric oxide in live cells

Qing Wang, Xiaojie Jiao, Chang Liu, Song He, Liancheng Zhao and Xianshun Zeng

a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
b Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Email: xshzeng@tjut.edu.cn.
Table of Contents

Table of Contents...2

General methods ...3

Table S1 ...4

Fig. S1...5

Fig. S2...5

Fig. S3...6

Fig. S4...6

Fig. S5...7

Fig. S6...8

Fig. S7...8

Fig. S8...9

Fig. S9...9

Fig. S10...10

Fig. S11...10

Fig. S12...11

Fig. S13...11

Fig. S14...12

Fig. S15...12

Fig. S16...13

Fig. S17...13

References...13
General methods

DEA/NONOate (diethylamine NONOate), ascorbic acid (AA), KO₂, H₂O₂, NaClO, NaNO₂, NaNO₃, LPS and N⁶-monomethyl-L-arginine (L-NMA) were obtained from commercial sources and used without additional purification. Hydroxyl radicals (·OH) were generated by reaction of Fe²⁺ with H₂O₂.¹ Peroxynitrite (ONOO⁻) was generated from amyl nitrite and H₂O₂ following literature procedures and the concentration of the ONOO⁻ stock solution was determined by measuring the absorbance at 302 nm (ε = 1670 M⁻¹ cm⁻¹).²

The stock solution of NO was produced by adding H₂SO₄ (20 %) to sodium nitrite solutions and bubbling NO into water for 20 min.³ The concentration of the NO solution was determined by the Griess method.⁴ Aliquots (50 μL) of this solution were added to 1 mL of potassium phosphate buffer (0.1 mM, pH 7.4) containing sulfanilamide solution (17 mM) and N-(1-naphthyl)ethylenediamine (0.4 mM). The solution was immediately mixed by inversion and incubated at room temperature for 5 min. The colorimetric product was measured at 496 nm by use of a UV/Vis spectrophotometer. The NO concentration of the solution was calculated according to Beer’s law using an extinction coefficient of 5400 M⁻¹ cm⁻¹ as determined from experiments using chemiluminescence standardization. Based on this method, the concentration of the NO stock solution is 1.2 mM.
<table>
<thead>
<tr>
<th>Probes</th>
<th>Structure</th>
<th>References</th>
<th>pH usage value</th>
<th>Response time</th>
<th>Detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAN</td>
<td></td>
<td>Anal. Biochem. 1993, 214, 11.</td>
<td>In acidic condition</td>
<td>< 5 min</td>
<td>10 nM</td>
</tr>
<tr>
<td>DAR-n</td>
<td></td>
<td>Anal. Chem., 2001, 73, 1967</td>
<td>> 4</td>
<td>-</td>
<td>7 nM (DAR-4M)</td>
</tr>
<tr>
<td>RB-NO</td>
<td></td>
<td>Org. Lett., 2008, 10, 2357</td>
<td>> 5</td>
<td>30 min</td>
<td>3.0 nM</td>
</tr>
<tr>
<td>SiRB-NO</td>
<td></td>
<td>Chem. Eur. J., 2016, 22, 5649</td>
<td>Fl intensity changed with pH</td>
<td>> 30 min</td>
<td>32.6 nM</td>
</tr>
<tr>
<td>ROPD</td>
<td></td>
<td>This paper</td>
<td>4.0-9.3</td>
<td>2.5 min</td>
<td>68.2 nM</td>
</tr>
</tbody>
</table>
Fig. S1 HRMS spectrum of the solution of ROPD after the addition of 10 equiv. of NO. The peak (m/z) at 517.2245 corresponds to the triazole derivative 4 (Calcd: 517.2239).

Fig. S2 The absorption a) and fluorescence emission b) spectra of ROPD (5 μM) in the presence of 20 equivalents of NO solution (black line) and the triazole 4 (5 μM) (red line) in PBS (100 mM, pH 7.4).
Fig. S3 Measurement of fluorescence dissociation constant (K_d) of ROPD with NO.

Fig. S4 The detection limit of ROPD (2.5 μM) towards NO by 3σ/k in PBS buffer (100 mM, pH = 7.4).

The detection limit was calculated based on the fluorescence titration. The emission intensity of the probe ROPD without nitric oxide was measured by 8 times, and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

$$LOD = \frac{3\sigma}{k}$$

Where σ is the standard deviation of the blank solution measured by 8 times; k is the slope of the calibration curve.

From the graph we get slope (k) = 15055830, and σ value is 0.3423

Thus we get the Limit of Detection (LOD) = $3\sigma/k$ = 68.2 nM.
Fig. S5 a) Histogram of the fluorescence enhancement ratio \(\frac{(F_i - F_0)}{F_0} \) of ROPD (5 μM) at 581 nm in the presence of various metal ions (100 μM). 0: ROPD, 1: NO, 2: AgNO₃, 3: Al(NO₃)₃, 4: Ca(NO₃)₂, 5: Cd(NO₃)₂, 6: Co(NO₃)₂, 7: Cr(NO₃)₃, 8: Cu(NO₃)₂, 9: FeCl₂, 10: FeCl₃, 11: Hg(ClO₄)₂, 12: KNO₃, 13: Mg(NO₃)₂, 14: MnCl₂, 15: NaNO₃, 16: Ni(NO₃)₂, 17: Pb(NO₃)₂, 18: Zn(NO₃)₂; b) Change ratio \(\frac{(F_i - F_0)}{F_0} \) of fluorescence intensity (581 nm) of ROPD (5 μM) upon addition of each metal ions (100 μM) followed by NO (100 μM) in PBS buffer solution (100 mM, pH = 7.4). 1: probe ROPD after addition of NO alone, and in the presence of 2: AgNO₃, 3: Al(NO₃)₃, 4: Ca(NO₃)₂, 5: Cd(NO₃)₂, 6: Co(NO₃)₂, 7: Cr(NO₃)₃, 8: Cu(NO₃)₂, 9: FeCl₂, 10: FeCl₃, 11: Hg(ClO₄)₂, 12: KNO₃, 13: Mg(NO₃)₂, 14: MnCl₂, 15: NaNO₃, 16: Ni(NO₃)₂, 17: Pb(NO₃)₂, 18: Zn(NO₃)₂; λₑₓ: 505 nm. Slit: 10 nm, 10 nm.
Fig. S6 1H NMR spectrum of 2 (400 MHz, CDCl$_3$).

Fig. S7 13C NMR spectrum of 2 (100 MHz, CDCl$_3$).
Fig. S8 HRMS of 2. HRMS: m/z [M + H+] = 508.1884; Calcd for [C_{30}H_{25}N_3O_5 + H^+]: 508.1873.

Fig. S9 ¹H NMR spectrum of 3 (400 MHz, CDCl₃).
Fig. S10 13C NMR spectrum of 3 (100 MHz, CDCl$_3$).

Fig. S11 HRMS of 3. HRMS: m/z [M - Cl$^-$] = 536.2196; Calcd for C$_{32}$H$_{30}$N$_3$O$_5^+$ = 536.2186.
Fig. S12 1H NMR spectrum of probe ROPD (400 MHz, CDCl$_3$).

Fig. S13 13C NMR spectrum of probe ROPD (100 MHz, CDCl$_3$).
Fig. S14 HRMS of probe ROPD. HRMS: m/z [M - Cl⁺ + H⁺]/2 = 253.6264, [M - Cl⁺] = 506.2443; Calcd for [C₃₂H₃₂N₃O₃⁺ + H⁺]/2 = 253.6261; [C₃₂H₃₂N₃O₃⁺] = 506.2444.

Fig. S15 ¹H NMR spectrum of the triazole 4 (400 MHz, CDCl₃).
Fig. S16 13C NMR spectrum of triazole 4 (100 MHz, CDCl$_3$).

Fig. S17 HRMS of triazole 4. HRMS: m/z [M - Cl$^-$] = 517.2253; Calcd for [C$_{32}$H$_{29}$N$_4$O$_3$]$^+$ = 517.2240.

References

