Electronic supplementary Information

Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and its application for colorimetric detection of \(\text{H}_2\text{O}_2 \) and glutathione in human blood serum

Vikas Kumar Singh\(^a\), Pradeep Kumar Yadav\(^a\), Subhash Chandra\(^a\), Daraksha Bano\(^a\), Mahe Talat\(^b\) and Syed Hadi Hasan\(^*\)\(^a\)

\(^a\)Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi -221005, U.P., India.

\(^b\)Department of Physics, Institute of Science, Banaras Hindu University, Varanasi-221005, U.P., India

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ((\text{S}1)) UV-visible absorption spectra of as synthesized NS-CQDs</td>
<td>(\text{S}3)</td>
</tr>
<tr>
<td>2. ((\text{S}2)) Effect of pH on the emission spectra of NS-CQDS with corresponding photograph under UV – light ((\lambda_{\text{ex}} = 365) nm) in the pH range 2 to 12</td>
<td>(\text{S}3)</td>
</tr>
<tr>
<td>3. ((\text{S}3)) Fluorescence spectra of NS-CQDS in different medium (DMEM, FBS, PBS) and its photograph under normal light and UV- light @365 nm</td>
<td>(\text{S}4)</td>
</tr>
<tr>
<td>4. ((\text{S}4)) Effect of ionic strength on emission intensity of NS-CQDS with photograph under UV- light ((\lambda_{\text{ex}} = 365) nm)</td>
<td>(\text{S}5)</td>
</tr>
<tr>
<td>5. ((\text{S}5)) Photostability of as synthesized NS-CQDS after irradiation of UV- light for 80 h</td>
<td>(\text{S}5)</td>
</tr>
<tr>
<td>6. ((\text{S}6)) Zeta potential profile of as synthesized NS-CQDs</td>
<td>(\text{S}6)</td>
</tr>
</tbody>
</table>

\(\text{S}1\)
7. (Table S1) Detail about fluorescence quantum yield measurement ... S6
8. Beer- lambert Law .. S7
9. (S7) Optimized parameter for the oxidation of TMB.. S7
10. (S8) photograph of GSH detection by ox-TMB under normal light and UV- light ($\lambda_{ex} = 365$ nm) ... S8
11. (S9) Fluorescence spectra of ox-TMB and ox-TMB + GSH .. S8
12. (S10) Absorption spectrum of Ox-TMB and emission spectrum of NS-CQDs. Inset shows the photograph of NS-CQDs under UV-light and ox-TMB under normal light S9
13. (S11) Selectivity test for GSH detection by ox-TMB solution ... S10
Figure S1. UV-visible absorption spectra of as synthesized NS-CQDs

Figure S2. Effect of pH on the emission intensity of NS-CQDS with corresponding photograph under UV – light ($\lambda_{ex} = 365$ nm) in the pH range 2 to 12.
Figure S3. Fluorescence spectra of NS-CQDS in different medium (DMEM, FBS, PBS) and its photograph under normal light and UV-light @365 nm showing high stability and well dispersity.
Figure S4. Effect of ionic strength in term of NaCl concentration on emission intensity of NS-CQDS with corresponding photograph under UV-light ($\lambda_{ex} = 365$ nm)

Figure S5. Photostability of as synthesized NS-CQDS after irradiation of UV-light for 80 h
Figure S6. Zeta potential profile of as synthesized NS-CQDs

Table S1. Fluorescence quantum yield measurement with Integrated intensity and absorbance of quinine sulphate and NS-CQDs at excitation wavelength 360 nm.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Integrated intensity at 360 nm</th>
<th>Absorbance at 360 nm</th>
<th>Quantum Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine Sulphate (Reference)</td>
<td>56191.340</td>
<td>0.047</td>
<td>54</td>
</tr>
<tr>
<td>NS-CQDs</td>
<td>45210.201</td>
<td>0.044</td>
<td>46</td>
</tr>
</tbody>
</table>

Fluorescence Quantum yield was determined by using equation 1

\[
QY = QY_{ref}\frac{\eta^2}{\eta_{ref}^2}\frac{I}{A}\frac{A_{ref}}{I_{ref}}
\]

Where \(QY_{ref}\) is the quantum yield of the reference compound; \(\eta\) is the refractive index \((\frac{\eta^2}{\eta_{ref}^2} = 1)\) of the solvent; \(I\) is the integrated fluorescence intensity; and \(A\) is the absorbance. To minimize reabsorption effects, absorbance in the 1 cm fluorescence cuvette were kept under 0.1.
Beer–Lambert Law

The initial reaction rate was calculated using equation 2

\[C = \frac{A}{c \cdot b} \quad 2 \]

where, \(c \) is the substrate concentration, \(A \) is the absorbance, \(b \) is the thickness of the solution.

Figure S7. Optimized parameter for the oxidation of TMB at different (a) pH (b) Temperature (c) Concentration of \(\text{H}_2\text{O}_2 \) (d) Concentration of TMB and (e) Time respectively.
Figure S8. Photograph showed naked eye colour changed (panel A) and under UV-light @ 365nm (panel B) after addition of different concentration of GSH in the ox-TMB solution.

Figure S9. Fluorescence spectra of ox-TMB (black line) and ox-TMB + GSH (red line) at excitation wavelength 360 nm with turn on signal (inset photograph) showing turn on sensing of GSH.
Figure S10. Absorption spectrum of Ox-TMB and emission spectrum of NS-CQDs. Inset shows the photograph of NS-CQDs under UV-light and ox-TMB under normal light.
Figure S11. Bar diagram represent relative absorption of ox-TMB after addition of 50 µL (C, 10^{-4} M) of GSH and 100 µL (C, 10^{-3} M) of amino acid and glucose in ox-TMB solution at ambient condition indicating negligible interference and photograph showed corresponding colour change.