Supporting Information

A simple Schiff base as dual-responsive fluorescent sensor for bioimaging recognition Zn$^{2+}$ and Al$^{3+}$ in living cells

Haiyang Liua,b, Tianqi Liuc, Jia Lia, Youming Zhanga,b, Jiahua Lia, Jun Songa*, Junle Qua*, Wai-Yeung Wonga,b*

a Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China

b Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, PR China

c Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
Contents

1. Materials and general methods...3
2. 1H NMR and 13C NMR spectra of picolinohydrazide...............................4
3. 1H NMR, 13C NMR and MS spectra of BDNOL......................................5
4. The selectivity of BDNOL..7
5. The response time of BDNOL towards Al$^{3+}$ and Zn$^{2+}$.........................8
6. Fluorescence testing in tap water...9
7. Job's plot..10
8. ESI-MS data for BDNOL-Al$^{3+}$ and BDNOL-Zn$^{2+}$...............................11
9. 1H NMR analysis of BDNOL-Al$^{3+}$ and BDNOL-Zn$^{2+}$......................12
10. MTT analysis...13
11. The association constant K_a..14
12. References..15
1. Materials and general methods

Methyl picolinate (98%), hydrazinium hydrate (80%), 4-(diethylamino)salicylaldehyde (99%), dimercapto propanol (98%), and metal chlorides were purchased from Sigma-Aldrich Chemical and used without further purification. All the solvents were bought from commercial sources and used with no further treatment. The 1H NMR and 13C NMR spectra were recorded on a Bruker Ultrashield TM 400 PLUS spectrometer with tetramethylsilane as an internal standard. Fluorescence spectral measurements were recorded on a Jobin Yvon FluoroLog-3-TCSPC spectrofluorometer. ESI-MS measurements were performed on a Waters Q-TOF premier Mass Spectrometer. UV-vis spectra measurements were recorded on Cary 4000 spectrophotometer. Absorption of MTT experiments were performed using Tecan Infinite M1000 Pro reader. Cell images were taken on Olympus FV1000 Inverted Confocal IX81 Microscope.
2. 1H NMR and 13C NMR spectra of Picolinohydrazide

1H NMR spectrum of picolinohydrazide

![Figure S1. 1H NMR (400 MHz, DMSO-d_6) d (ppm): 9.89 (s, 1 H), 8.61 (d, J = 8.0 Hz, 1 H), 7.98 (m, 2 H), 7.57 (m, 1 H), 4.57 (s, 2H).](image)

13C NMR spectrum of picolinohydrazide

![Figure S2. 13C NMR (100 MHz, DMSO-d_6) d (ppm): 163.14, 150.36, 149.02, 138.17, 126.76, 122.24.](image)
3. 1H NMR, 13C NMR and MS spectra of BDNOL

1H NMR spectrum of BDNOL

![Figure S3. 1H NMR (400 MHz, DMSO-d_6) d (ppm): 12.22 (s, 1H), 11.59 (s, 1H), 8.71 (d, $J = 7.6$ Hz, 1H), 8.58 (d, 1H), 8.08 (m, 2H), 7.66 (t, $J = 3.8$ Hz, 1H), 7.13 (d, $J = 8.4$ Hz, 1H), 6.27 (d, $J = 8.4$ Hz, 1H), 6.13 (s, 1H), 3.36 (q, $J = 7.0$ Hz, 4H), 1.11 (t, $J = 7.0$ Hz, 6H). The above is the whole spectrum of 1H NMR and the below is the partial spectrum.]

13C NMR spectrum of BDNOL

![Figure S4. 13C NMR (100 MHz, DMSO-d_6) d (ppm): 160.40, 160.15, 151.93, 150.71, 149.98, 149.02, 138.51, 132.41, 127.39, 123.07, 106.94, 104.17, 98.00, 44.31, 13.05.]

Figure S5. ESI mass spectra of BDNOL. HRMS calcd for C_{17}H_{21}N_{4}O_{2} [BDNOL+H]^+:
313.1665, found: 313.1659.
4. The selectivity of QLSA

Figure S6. Absorption spectra obtained for BDNOL (10 μM) in CH₃OH/HEPES buffer (1/4, v/v, pH 7.2) after the addition of 5.0 equiv. of Na⁺, K⁺, Mg²⁺, Ca²⁺, Co²⁺, Cu²⁺, Ni²⁺, Mn²⁺, Fe²⁺, Fe³⁺, Cr³⁺, Cd²⁺, Hg²⁺, Pb²⁺, Ag⁺, Al³⁺ and Zn²⁺ (λₑₓ: 390 nm).
5. The response time of BDNOL towards Al$^{3+}$/Zn$^{2+}$

Figure S7. The fluorescence response time of BDNOL (10 μM) towards (a) Al$^{3+}$ (λ_{em} 504 nm), and (b) Zn$^{2+}$ (λ_{em} 575 nm) in CH$_3$OH/HEPES buffer (1/4, v/v, pH 7.2) (λ_{ex}: 390 nm).
6. Fluorescence testing in tap water

Figure S8. Variation of fluorescence emission recorded for BDNOL (10 μM) upon addition of (a) Al$^{3+}$ and (b) Zn$^{2+}$, λ_{ex}: 390 nm. The solvent is tap water-methanol (4/1, v/v).

Table S1. Detection of Al$^{3+}$ and Zn$^{2+}$ in tap water samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Al$^{3+}$/Zn$^{2+}$ added (μM)</th>
<th>Found (μM)</th>
<th>Mean</th>
<th>Recovery</th>
<th>R.S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>2.0</td>
<td>1.85</td>
<td>2.03</td>
<td>1.92</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.94</td>
<td>3.98</td>
<td>3.87</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>5.97</td>
<td>6.04</td>
<td>5.91</td>
<td>6.17</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>7.78</td>
<td>8.07</td>
<td>7.93</td>
<td>8.16</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>9.06</td>
<td>8.87</td>
<td>8.91</td>
<td>9.12</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>2.0</td>
<td>1.91</td>
<td>2.12</td>
<td>2.09</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.89</td>
<td>4.15</td>
<td>4.11</td>
<td>4.09</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>6.03</td>
<td>6.14</td>
<td>6.27</td>
<td>6.08</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>7.90</td>
<td>8.21</td>
<td>8.15</td>
<td>8.27</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>9.06</td>
<td>9.19</td>
<td>9.24</td>
<td>9.17</td>
</tr>
</tbody>
</table>
7. Job's plot

![Job's plot for BDNOL towards Al$^{3+}$ and Zn$^{2+}$ ions.](image)

Figure S9. Job's plot obtained for BDNOL towards (a) Al$^{3+}$ and (b) Zn$^{2+}$ ions. The total concentration of BDNOL and Al$^{3+}$/Zn$^{2+}$ was fixed at 20 μM.
8. ESI-MS data for BDNOL-Al$^{3+}$ and BDNOL-Zn$^{2+}$

Figure S10. (a) ESI mass spectra of BDNOL in the presence of Al$^{3+}$ (5.0 equiv.), m/z 355.1351 (calcd = 355.1337) corresponding to [BDNOL + Al$^{3+}$ + OH$^{-}$ - H$^{+}$]$^+$ and m/z 369.1507 (calcd = 369.1491) corresponding to [BDNOL + Al$^{3+}$ + CH$_3$OH - 2H$^+$]$^+$, indicating the formation of a 1:1 QLSA-Al$^{3+}$ complex. (b) ESI mass spectra of BDNOL in the presence of Zn$^{2+}$ (5.0 equiv.), m/z 375.0799 (calcd = 375.0794) corresponding to [BDNOL + Zn$^{2+}$ - H$^+$]$^+$, indicating the formation of a 1:1 QLSA-Zn$^{2+}$ complex.
9. 1H NMR analysis of BDNOL-Al^{3+}/Zn$^{2+}$

Figure S11. 1H NMR analysis of BDNOL and BDNOL-Al^{3+} in DMSO-d_6.

Figure S12. 1H NMR analysis of BDNOL and BDNOL-Zn^{2+} in DMSO-d_6.
10. MTT analysis

Figure S13. MTT assay of BDNOL on Hela cells for 12 h.
11. The association constant K_a

The association constant (K_a) of BDNOL-Al^{3+}/Zn^{2+} was obtained from nonlinear curve fitting of the fluorescence titration data according to Benesi-Hildebrand equation (Eq. 1) [1-3], where F_0, F, and F_{max} are the fluorescence intensity of BDNOL in the absence of Al^{3+}/Zn^{2+}, at a certain concentration of Al^{3+}/Zn^{2+} ions and a complete-interaction concentration of Al^{3+}/Zn^{2+}, $[M]$ is the metal ion concentration, n is the binding stoichiometry, and K_a is the association constant.

\[
\frac{1}{F - F_0} = \frac{1}{K_a \cdot (F_{\text{max}} - F_0) \cdot [M]^n} + \frac{1}{F_{\text{max}} - F_0} \quad \text{(Eq. S1)}
\]
12. References

