Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2018

Multifunctional GdVO₄:Eu Core-Shell Nanoparticles Containing ²²⁵Ac for Targeted Alpha Therapy and Molecular Imaging*

M. Toro-González,^a R. Copping,^b S. Mirzadeh,^b J. V. Rojas^a

Electronic Supplementary Information

Fig. S.1 Diffraction patterns of Gd_(1-x)Eu_xVO₄ core NPs

Table S.1	Summary	of crystallite	size measured	for Gd _{(1->}	Eu _x VO ₄	core NPs
-----------	---------	----------------	---------------	---------------------------	---------------------------------	----------

Sample	Crystallite size (nm)
Gd _{0.95} Eu _{0.05} VO ₄	4.5
$Gd_{0.9}Eu_{0.1}VO_4$	4.4
Gd _{0.8} Eu _{0.2} VO ₄	4.7
$Gd_{0.6}Eu_{0.4}VO_4$	4.7

^{*} This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

^a Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States. E-mail: <u>torogonzalezm@vcu.edu</u> (M. Toro González), <u>jvrojas@vcu.edu</u> (J. V. Rojas).

^b Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States. E-mail: <u>coppingr@ornl.gov</u> (R. Copping), <u>mirzadehs@ornl.gov</u> (S. Mirzadeh).

Fig. S.2 Absorption spectra of $Gd_{(1-x)}Eu_xVO_4$ core NPs

Fig. S.3 Excitation spectra of $Gd_{(1-x)}Eu_xVO_4$ core NPs

Fig. S.4 Emission spectra of $Gd_{(1-x)}Eu_xVO_4$ core NPs

Table S.2 Lanthanide weight percentage based on EDS results for $Gd_{(1-x)}Eu_xVO_4$ core NPs

	Weight percentage			
Sample	Eu (%)	Gd (%)		
Gd _{0.95} Eu _{0.05} VO ₄	5.6	94.4		
$Gd_{0.9}Eu_{0.1}VO_4$	10.6	89.4		
Gd _{0.8} Eu _{0.2} VO ₄	20.9	79.1		
Gd _{0.6} Eu _{0.4} VO ₄	40.4	59.6		

Fig. S.5 TEM images of $Gd_{0.8}Eu_{0.2}VO_4$ (a) core and (b) core + 2 shells NPs

Fig. S.6 (a) Intensity and (b) number particle size distributions of $Gd_{0.8}Eu_{0.2}VO_4$ core and coreshell NPs

Table S.3 Magnetic susceptibility of Gd_{0.8}Eu_{0.2}VO₄ core and core-shell NPs

Sample	Magnetic Susceptibility (× 10 ⁻⁶ emu Oe ⁻¹ g ⁻¹)
Core	56.4
Core + 1 shell	56.3
Core + 2 shells	56.0

Table S.4 Lanthanide weight and atomic percentage of Gd_{0.8}Eu_{0.2}VO₄ core and core-shell NPs

	Weight percentage		Atomic percentage	
Sample	Eu (%)	Gd (%)	Eu (%)	Gd (%)
Core	78.0	22.0	77.3	22.7
Core + 1 shell	78.0	22.0	77.3	22.7
Core + 2 shells	77.9	22.1	77.3	22.7

Table S.5 Absolute quantum yield of $Gd_{(1-x)}Eu_xVO_4$ core NPs

Sample	Absolute quantum yield (%)
Gd _{0.95} Eu _{0.05} VO ₄	29.4
Gd _{0.9} Eu _{0.1} VO ₄	25.7
Gd _{0.8} Eu _{0.2} VO ₄	23.5
Gd _{0.6} Eu _{0.4} VO ₄	22.6

Sample	Absolute quantum yield (%)
Core	22.8
Core + 1 shell	18.5
Core + 2 shells	14.0

Table S.6 Absolute quantum yield of $Gd_{0.8}Eu_{0.2}VO_4$ core-shell NPs

Fig. S.7 Time-resolved luminescence decay curves of (a) $Gd_{(1-x)}Eu_xVO_4$ and (b) $Gd_{0.8}Eu_{0.2}VO_4$ core-shell NPs

Table S.7 Luminescence decay lifetimes of $Gd_{(1-x)}Eu_xVO_4$ and $Gd_{0.8}Eu_{0.2}VO_4$ core-shell NPs fitted using a biexponential function $[I = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + I_0]$

Sample	A ₁	$ au_1$ (µs)	\mathbf{A}_{2}	$ au_2(\mu s)$	R ²	$ au_{\rm ave}({ m ms})$
Gd En VO	5935.4 ±	$351.0 \pm$	4025.1 ±	1637.8 ±	0.0004	1 2 2
$Uu_{0.95} Eu_{0.05} VU_4$	124.8	9.6	60.2	17.5	0.9994	1.55
Cd En VO	$5406.7 \pm$	$363.5 \pm$	$4387.8 \pm$	$1607.5 \pm$	0.0070	1.2.4
$Gu_{0.9}Eu_{0.1}vO_4$	227.6	22.0	133.9	33.6	0.9979	1.34
Cd En VO	4339.2 ±	$316.7 \pm$	$5486.6 \pm$	$1246.2 \pm$	0.0074	1.09
$Gu_{0.8}Eu_{0.2}VO_4$	363.5	35.8	210.1	27.3	0.9974	
Cd En VO	$3800.8 \pm$	310.9 ±	$6158.2 \pm$	999.1 ±	0.00701	0.00
$Gu_{0.6}Eu_{0.4}VO_4$	318.9	45.2	320.4	24.1	0.99791	0.89
Coro	4339.2 ±	$316.7 \pm$	$5486.6 \pm$	$1246.2 \pm$	0.0074	1.09
Core	363.5	35.8	210.1	27.3	0.9974	
Core + 1 shell	$4266.8 \pm$	328.1 ±	5501.8 ±	1173.2 ±	0.00914	1.02
	269.8	33.1	219.5	24.6	0.99814	1.02
Cara 2 shalls	4363.9 ±	$288.3 \pm$	5887.1 ±	$1008.4 \pm$	0.00022	0.00
Core + 2 shells	240.5	21.9	157.0	13.3	0.99922	0.00

Sample	A ₁	$ au_1(\mu s)$	R ²
Gd _{0.95} Eu _{0.05} VO ₄	6260.21 ± 59.68	1166.61 ± 13.55	0.99138
$Gd_{0.9}Eu_{0.1}VO_4$	6509.98 ± 60.53	1194.31 ± 13.71	0.99163
Gd _{0.8} Eu _{0.2} VO ₄	7083.28 ± 53.91	1051.62 ± 9.20	0.99497
Gd _{0.6} Eu _{0.4} VO ₄	7808.46 ± 52.47	872.27 ± 6.09	0.99669
Core	7083.28 ± 53.91	1051.62 ± 9.20	0.99497
Core + 1 shell	7273.26 ± 51.17	984.83 ± 7.68	0.99595
Core + 2 shells	7559.82 ± 43.40	869.41 ± 5.18	0.99759

Table S.8 Luminescence decay lifetimes of $Gd_{(1-x)}Eu_xVO_4$ and $Gd_{0.8}Eu_{0.2}VO_4$ core-shell NPs fitted using a exponential function $[I = A_1 \exp(-t/\tau_1) + I_0]$

Table S.9 Bi ions concentration and relative retention of Bi by core to core + 2 shells NPs

Dialysis	Bi ion con dialysa	ncentration in ite (μg/mL)	Relative Retention of Bi by Core to Core	
Period	Core	Core + 2 shells	+ 2 shells NPs	
30 min	0.41 ± 0.31	0.47 ± 0.32	1.1 ± 1.0	
1 h	0.44 ± 0.30	0.59 ± 0.30	1.3 ± 0.9	
2 h	0.51 ± 0.29	0.68 ± 0.30	1.3 ± 0.7	
4 h	0.51 ± 0.30	0.72 ± 0.30	1.4 ± 0.7	
24 h	0.50 ± 0.29	0.70 ± 0.29	1.4 ± 0.7	
47 h	0.45 ± 0.31	0.79 ± 0.32	1.8 ± 0.8	