Electronic Supplementary Information

Bead-type Polystyrene/Nano-CaCO₃ (PS/nCaCO₃) composites:
A high-performance adsorbent for the removal of interleukin-6

Yamin Chai#, Jie Chen#, Tingting Wang, Jian Chen, Yingda Ma, Guanghui Cheng, Chunran Li, Qian Zhang, Lailiang Ou*, Wenzhong Li**

a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
b Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany

#: These authors contributed equally to this work.
*: Correspondence should be addressed to Lailiang Ou and Wenzhong Li
ouyll@nankai.edu.cn
bcrtlwz@gmail.com

Supporting figures and table

Fig. S1. TEM images of nCaCO₃ with different magnifications.
Fig. S2. t-Plots of N₂ adsorption isotherms for adsorbents: (a) PS/CaCO₃ and (b) PS.

Fig. S3. Photograph containing a few spheres for 2.5 wt% PS/nCaCO₃ by an optical microscope.
Fig. S4. Adsorption isotherms of IL-6 onto three adsorbents in plasma (T=37°C, t=2 h, mean ± SD, n=3).
Fig. S5. Hemolysis assay for nCaCO₃ with different concentrations, where using NaCl as a negative control (first) and water as a positive control (second).
Fig. S6. Blood platelet adhesion assay for nCaCO$_3$ with different concentrations.

Fig. S7. Photograph of the dynamic model for hemoperfusion.
Fig. S8. The contents of Ca^{2+} vs time for PS/nCaCO$_3$ released in saline solution under flowing and sonication conditions.

Fig. S9. The load–displacement curves of (a) PS/nCaCO$_3$ and (b) PS adsorbents.