Supporting information

Theranostic Radioiodine Labeled Melanin Nanoparticles

Inspired by Clinical Brachytherapy Seeds

Jie Sheng¹, Xinyu Wang², Junjie Yan², Donghui Pan², Runlin Yang², Lizhen Wang², Yuping Xu², Min Yang¹,²*

1. The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
2. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China

Keywords: melanin, theranostic, radioiodine, labeling, I-131
Figure S1. (a) Dry powder of MNP, MNP-I and MNP-Ag-I and. (b) Solution of MNP, MNP-I and MNP-Ag-I.

Figure S2. MNP, MNP-I and MNP-Ag-I incubation with PBS for 0 h (a), 24 h (b) and 48 h (c). MNP, MNP-I and MNP-Ag-I incubation with serum for 0 h (d), 24 h (e) and 48 h (f).
Figure S3. UV–vis–NIR spectra of MNP, MNP-I and MNP-Ag-I incubation with PBS for 0 h (a), 24 h (b) and 48 h (c). UV–vis–NIR spectra of MNP, MNP-I and MNP-Ag-I incubation with serum for 0 h (a), 24 h (b) and 48 h (c).
Figure S4. HE staining of the sections of main organs including heart, liver, spleen, lung and kidney in MNP-Ag-\(^{131}\text{I}\), \(^{131}\text{I}\) and control groups after treatment.

Table S1. Atomic percentage of MNP, MNP-Ag-I determined by XPS survey.

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>O</th>
<th>N</th>
<th>Ag</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNP</td>
<td>74.31</td>
<td>19.76</td>
<td>4.6</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>MNP-Ag-I</td>
<td>73.02</td>
<td>18.48</td>
<td>4.38</td>
<td>2.03</td>
<td>2.08</td>
</tr>
</tbody>
</table>