Design nanoparticles with improved tumor penetration: viewing surface property from molecular architecture

Long Zhang, a, b, c Pengyan Hao, a, b, c Dejun Yang, a, b, c Sheng Feng, d Bo Peng, b, c Dietmar Appelhans, e Tinghong Zhang, a, b, c* Xingjie Zan, a, b, c*

a School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035. PR China.

b Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province, 325001. PR China.

c Engineering Research Center of Clinical Functional Materials and Diagnosis&Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, CAS Wenzhou, Zhejiang Province, 325001. PR China

d Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, 19107. USA

e Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany

*Correspondence - Tinghong Zhang, Tel: +86 577 88017546; E-mail: zangth@wibe.ac.cn. Xingjie Zan, Tel: +86 577 8017519; E-mail: xjzan2000@hotmail.com.
Fig. S1 Representative image of apoptosis assay by flow cytometry.

Fig. S2 Representative image of cellular uptake by flow cytometry.

Fig. S3 The viability tested of HeLa cells after incubating with various inhibitors for 2 h by CCK-8 assay.
C: medium treated cells. Chlorpromazine (5 μg/mL), genistein (100 μg/mL), nocodazole (5 μg/mL) and amiloride (25 μg/mL).
Fig. S4 Representative image of HeLa spheroids.

Fig. S5 In vitro representative image of tumor penetration by flow cytometry.
Fig. S6 *In vivo* representative image of tumor penetration by flow cytometry.

Fig. S7 The AFM images of PS-G0, G3, -G4, -G5. Scale bar: 5 nm