Supplementary Information

Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid) assisted anion-exchange reactions

Longshi Rao,a,c Yong Tang,a Caiman Yan,a Jiasheng Li,a Guisheng Zhong,a Kairui Tang,b Binhai Yu,a Zongtao Li,a* Jin Z. Zhang*c

a. Engineering Research Centre of Green Manufacturing for Energy-Saving and New-Energy Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
b. The Mechanical Engineering, Pennsylvania State University, Harrisburg, PA 17057, USA
c. Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA

Correspondence address:
E-mail: meztli@scut.edu.cn
E-mail: zhang@ucsc.edu
Element	wt %
Cs | 20.53
Pb | 20.06
Br | 35.65
Cl | 23.76

Element	wt %
Cs | 20.20
Pb | 20.76
Br | 59.04
Fig. S1 EDX images of the CsPbBr$_{3-x}$Cl$_x$ after treatment with PLA at different periods of time: (a) 0 min, (b) 30 min, (c) 60, and (d) 120 min.
Fig. S2 (a) The effect of the volume ratio of PLA to parent CsPbBr$_3$ NCs on the PL spectra shift and (b) the time cost for different volume ratio of PLA to parent CsPbBr$_3$ solution when the anion-exchange reaction completed.