Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Excellent microwave absorption of lead halide perovskites with high stability

Heng Guo,^a Jian Yang,^a Bingxue Pu,^a Haiyuan Chen,^a Yulan Li,^a Zhiming Wang,^b and Xiaobin Niu*^{a,b}

^{a.} State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Materials and Energy,

University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

^{b.} Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,

Chengdu 610054, P. R. China

Fig. S1 Optical microscope image of small a) MAPbBr₃ and b) MAPbI₃ single crystals. Photographs of bulk c) MAPbBr₃ and d) MAPbI₃ single crystals.

Fig. S2 a) $(\alpha hv)^2$ versus hv Tauc plots of MAPbX₃ (X = I, Br or CI) single crystals. TGA and DTG curves of b) MAPbI₃, c) MAPbBr₃ and d) MAPbCl₃ single crystals.

Fig. S3 Schematic drawing of the experimental set-up of the vector network analyzer for microwave absorption measurement.

Fig. S4 2D color plots of numerical simulated reflection loss versus thickness as a function of frequency: a) MAPbI₃, b) MAPbBr₃, c) MAPbCl₃, d) PbI₂, e) PbBr₂, f) PbCl₂, g) MAI, h) MABr and i) MACI samples.

Samples	Frequency (GHz)	Thickness (mm)	Reflection loss (dB)
MAPbl ₃	13.80	5.72	-41.66
MAPbBr ₃	13.63	5.77	-35.07
MAPbCl ₃	11.00	7.00	-19.42
Pbl ₂	18.00	5.84	-15.92
PbBr ₂	17.91	5.26	-49.11
PbCl ₂	17.65	5.06	-52.47
MAI	16.77	6.99	-9.20
MABr	18.00	6.21	-9.08
MACI	18.00	6.55	-8.23
Paraffin	17.91	6.99	-3.04

Table S1 The optimal microwave absorption parameters of these measured samples as a function of large thickness.

Fig. S5 a) Complex permittivity (ϵ' and ϵ''), b) complex permeability (μ' and μ''), c) dielectric loss/magnetic loss and d) *C*o (*C*o = $\mu''(\mu')^{-2}f^{-1}$) curves of PbX₂ (X = I, Br or CI) samples.

Fig. S6 a) Complex permittivity (ϵ' and ϵ''), b) complex permeability (μ' and μ''), c) dielectric loss/magnetic loss and d) C_o ($C_o = \mu''(\mu')^{-2f-1}$) curves of MAX (X = I, Br or Cl) samples.

Samples	Days	Frequency (GHz)	Thickness (mm)	Reflection loss (dB)
MAPbl ₃	0	16.77	1.62	55.23
	30	13.45	2.09	46.89
	90	15.2	1.88	43.77
	120	18	1.45	37.03
	180	17.04	1.6	26.51
MAPbBr ₃	0	15.46	1.76	54.7
	30	15.46	1.81	44.11
	90	15.99	1.67	37.92
	120	16.25	1	36.67
	180	17.04	1.58	24.84
MAPbCl ₃	0	13.54	1.95	46.44
	30	17.48	1.55	43.68
	90	16.6	1.55	41.75
	120	12.49	2.11	38.87
	180	17.04	1.58	24.84

Table S2 The optimal microwave absorption parameters of these measured samples as a function of stored time in N_2 .

Fig. S7 Photographs of $MAPbI_3$, $MAPbBr_3$ and $MAPbCI_3$ crystal samples stored in N_2 for 180 days.