Supporting information

Gate-tunable interfacial properties of in-plane ML MX₂ 1T'-2H heterojunctions

Shiqi Liu,† Jingzhen Li,† Bowen Shi, Xiuying Zhang, Yuanyuan Pan, Meng Ye, Ruge Quhe, Yangyang Wang, Han Zhang, Jiahuan Yan, Linqiang Xu, Ying Guo, Feng Pan,6,* and Jing Lu1,2,*

1 State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
3 State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
4 Nanophotonics and Optoelectronics Research Center, Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, P. R. China
5 School of Physics and Telecommunication Engineering, Shaanxi Sci-Tech University, Hanzhong 723001, P. R. China
6 School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China

Email: jinglu@pku.edu.cn, panfeng@pkusz.edu.cn

†These authors contributed equally to this work.
Figure S1. (a) ~ (f): Interfacial structures of the contact configuration for the ML MoS$_2$ 1T-2H in-plane and the ML MX$_2$ 1T’-2H in-plane heterojunctions before optimization. The 1T’/1T and 2H phase within one period at the interface are zoomed in the rectangle black dash line.
Figure S2: Energy- and space-dependent typical charge density of the MIGS in the ML MoTe$_2$ and WS$_2$ 1T'-2H in-plane heterojunctions. The MIGS at the interface are circled by the dark blue right triangle.
Figure S3. Comparison of the SBHs (Φ^e_W/Φ^h_W) of the work function approximation between this work and Wei’s work.¹
Figure S4. Comparison of the band structure and the transport SBH of the ML MoTe$_2$ 1T'-2H in-plane heterojunction without and with spin orbit coupling (SOC).

Reference