Supplementary material for paper:

Tris (ethylene diamine) nickel acetate as a promising precursor for hole transport layer in planar structured perovskite solar cells

Danila S. Saranin^{*a}, Vsevolod N. Mazov^a, Lev O. Luchnikov^a, Dmitry Lypenko^b, Pavel A. Gostishev^a, Dmitry S.Muratov^a, Dmitry A. Podgorny^c, Denis V. Migunov^d, Sergei I. Didenko^{a,e}, Marina N. Orlova^e, Denis V. Kuznetsov^{a,f}, Alexey R. Tameev^b and Aldo Di Carlo^{*a,g}

^{a.}L.A.S.E. - Laboratory for Advanced Solar Energy,

National University of Science and Technology "MISiS"

119049 Leninskiy prospect ,. Moscow, Russia

^{b.}Laboratory "Electronic and photon processes in polymer nanomaterials",

- Russian academy of sciences A.N. Frumkin Institute of Physical chemistry and Electrochemistry, 119071 Leninskiy prospect 31k4. Moscow, Russia ^c Department of Material Science in Semiconductors and Dielectrics,
- National University of Science and Technology "MISiS", 119049 Krymskiy val 3. Moscow, Russia
- ^{d.}R&D center "Microsystem technique and the bases of electronic components", National Research University of Electronic Technology, 124527, Solnechnaya alley 6, Zelenograd, Moscow, Russia
- ^{e.}Department of Semiconductor Electronics and Device Physics, National University of Science and Technology "MISiS" 119049 Krymskiy val 3, Moscow, Russia

^f Department of Functional NanoSystems and High- Temperature Materials,

National University of Science and Technology "MISiS" 119049 Leninskiy prospect 4, Moscow, Russia

g-CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, 00133 via del Politecnico 1, Rome, Italy

*Corresponding authors: Danila Saranin e-mail: <u>danilasaranin@gmail.com</u> Professor Aldo Di Carlo e-mail: <u>aldo.dicarlo@uniroma2.it</u>

Fig. S1. Photo of nickel acetate (NiA) and synthesized Tris (ethylene diamine) nickel acetate (TED - NiA) precursor

Fig. S2. AFM 3D reconstruction of 10 nm NiO film

Fig. S3. XRD plot of decomposed TED-NiA film

The presence of the corresponding peaks on the XRD pattern unequivocally indicates the presence of the nickel and the roentgen-amorphous phase of nickel oxide phases^[1]. In accordance with the literature, the peak at 32 degrees also refers to the phase of nickel oxide^[2].

Fig. S4. JV curves of the glass/FTO/NiO/Au structures for several thicknesses of NiO

The resistivity (ρ) was calculated accordingly to equation S1:

$$\rho = \frac{R * S}{l} , \tag{S1}$$

where R-resistance (extracted from diode JV curve), ohm; S-pixel area, cm²; /-film thickness, cm.

Tab.S1 Calculated resistivity

TED-NiA concentration, M / NiO film thickness, nm	ρ, ohm*cm
2.00 / 27 nm	3.40*10 ⁵
1.50 / 16 nm	3.31*10 ⁵
1.00 / 10 nm	1.82*10 ⁵

Tab.S2 Output JV parameters of FTO/NiOx/CH3NH3PbI3/C60/BCP/AI devices. Each HTL thickness was tested on 12 devices.

TED-NiA concentration,M / NiO film thickness,nm	Value	Uoc, V	Jsc, mA/cm ²	FF	PCE, %	Rs, ohm*cm ²
2.00 / 27 nm	average	0.97	17.76	0.55	9.42	9.94
	best	0.99	18.42	0.64	11.00	8.23
1.50 / 16 nm	average	1.00	18.38	0.58	9.51	9.67
	best	1.02	18.95	0.64	10.92	8.19
1.00 / 10 nm	average	1.02	19.58	0.73	14.82	4.82
	best	1.02	19.68	0.77	15.31	4.61

Reverse and forward scan JV curves presented on fig. S5 (a-c) were measured for best performing HTL thickness 10 nm with 22; 135 and 345 mV/s scan rates to determine an effect of hysteresis.

Fig. S5. Reverse and forward scan JV curves for best performing HTL thickness 10 nm with 22 (a); 135 (b) and 345 (c) mV/s

Hysteresis index was calculated accordingly equation S2:

$$H_{Index} = \left| \frac{PCE_{reverse} - PCE_{forward}}{PCE_{reverse}} \right|,$$
(S2)

where PCE reverse - efficiency calculated from reverse scan of JV curve, %;

PCE forward - efficiency calculated from forward scan of JV curve, %.

Tab.S3 Hysteresis index for best performing HTL thickness (10 nm)

Scan rate, mV/s	H _{index} , a.u.		
22	0.015		
135	0.006		
345	0.011		

Tab.S4 Reverse and forward JV output performance for best performing HTL thickness 10 nm with 22; 135 and 345 mV/s scan rate

Scan rate, mV/s	Scan direction	Uoc, V	Jsc, mA/cm ²	FF	PCE, %
22	reverse	1.01	-19.68	077	15.31
	forward	1.02	-19.98	0.74	15.08
135	reverse	1.02	-19.76	0,75	15.12
	forward	1.02	-19.64	0,75	15.02
345	reverse	1.01	-19.04	0.76	14.62
	forward	1.01	-19.26	0.76	14.78

The MAPI/NiO/FTO Auger depth profiles presented on fig. S6 (a,b) for the glass/FTO/NiO/MAPI stack.

Fig.S6. MAPI/NiO/FTO Auger profiling for 10 nm (a) and 16 nm (b) thick NiO HTL

Shelf life measurement (presented on fig. S7 (a-d)) were provided for 10 nm thick NiO HTL device at standard 1.5 AM G conditions.

Fig.S7. Shelf life of PSC with 10 nm NiO HTL

References:

- [1] J. T. Richardson, R. Scates, M. V Twigg, Appl. Catal. A Gen. 2003, 246, 137–150.
- [2] B. B. Nayak, S. Vitta, A. K. Nigam, D. Bahadur, n.d., DOI 10.1016/j.tsf.2005.10.018.