ESI for

Compositionally Tunable Ternary Bi₂(Se_{1-x}Te_x)₃ and (Bi_{1-y}Sb_y)₂Te₃ Thin Films via Low Pressure Chemical Vapour Deposition

Sophie L. Benjamin^{a,b}, C. H. (Kees) de Groot^c, Chitra Gurnani^{a,d}, Samantha L. Hawken^a, Andrew L. Hector^a, Ruomeng Huang^{c*}, Marek Jura^e, William Levason^a, Eleanor Reid^a, Gillian Reid^{a*}, Stephen P. Richards^a, Gavin B. G. Stenning^e

Experimental Section:

Precursor synthesis

All precursor complexes were prepared using Schlenk, vacuum line and glove box techniques under a dry nitrogen atmosphere. The reagents were stored and manipulated using a dry, N₂-purged glove box. MeCN and CH₂Cl₂ were dried by distillation from CaH₂. SeⁿBu₂,¹ TeⁿBu₂² and [BiCl₃(TeⁿBu₂)₃]³ were prepared according to the literature methods. IR spectra were recorded as Nujol mulls between CsI plates using a Perkin-Elmer Spectrum 100 instrument unless otherwise stated and ¹H and ¹³C{¹H} NMR spectra were recorded from solutions in CDCl₃ or CD₂Cl₂ on a Bruker AV400 spectrometer, ⁷⁷Se{¹H} and ¹²⁵Te{¹H} NMR spectra on a Bruker AV400 spectrometer referenced to external neat SeMe₂ and TeMe₂, respectively. Microanalytical results were obtained from Medac Ltd. Note that the yields quoted are those corresponding to the final isolated materials and reflect losses in removing the oils from the Schlenk flasks.

[BiCl₃(SeⁿBu₂)₃]: BiCl₃ (0.10 g, 0.32 mmol) was dissolved in anhydrous MeCN (10 mL) and the solution cooled to 0 °C. A solution of SeⁿBu₂ (0.18 g, 0.96 mmol) in MeCN (10 mL) was slowly added, giving a pale yellow solution which was allowed to warm to room temperature and then stirred for 1 h. The volatile components were removed *in vacuo*, leaving a viscous yellow oil that was dried *in vacuo* for 1 h. Yield: 0.19 g, 68 %. ¹H NMR (CDCl₃): δ = 0.95 (*t*, [3H], CH₃), 1.46 (*m*, [2H], CH₂), 1.72 (*q*, [2H], CH₂), 2.99 (*t*, [2H], CH₂Se). ¹³C{¹H} NMR (CDCl₃): δ = 13.6 (CH₃), 23.0 (CH₂), 27.2 (CH₂), 32.6 (CH₂Se). ⁷⁷Se{¹H} NMR (CH₂Cl₂/CDCl₃): δ = 196. IR (neat thin film /cm⁻¹): *v* = 267 br (Bi–Cl). Anal. calcd for C₂₄H₅₄BiCl₃Se₃: C 32.2, H 6.1; found: C 31.9, H 6.2%.

^a Chemistry, University of Southampton, Southampton SO17 1BJ, U.K. Email: G.Reid@soton.ac.uk

^b School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, U.K.

^c Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K. Email:

R.Huang@soton.ac.uk

^d School of Natural Sciences, Mahindra Ecole Centrale, Hyderabad, India.

^e ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK.

[SbCl₃(SeⁿBu₂)₃]: Freshly sublimed SbCl₃ (0.228 g, 1.0 mmol) was dissolved in anhydrous MeCN (10 mL) and the solution cooled to 0 °C. A solution of SeⁿBu₂ (0.580 g, 3.0 mmol) in MeCN (10 mL) was slowly added, giving a pale yellow solution which was allowed to warm to room temperature and then stirred for 1 h. The volatile components were removed *in vacuo*, leaving a pale yellow oil that was dried gently *in vacuo*. ¹H NMR (CDCl₃): $\delta = 0.91$ (*t*, [3H], CH₃), 1.39 (*m*, [2H], CH₂), 1.63 (*q*, [2H], CH₂), 2.54 (*t*, [2H], CH₂Se). ¹³C{¹H} NMR (CDCl₃): $\delta = 13.9$ (CH₃), 23.6 (CH₂), 24.4 (CH₂), 33.3 (CH₂Se). ⁷⁷Se{¹H} NMR (CH₂Cl₂): $\delta = 168$. IR (thin film/cm⁻¹): *v* = 306 br (Sb–Cl). Anal. calcd for C₂₄H₅₄SbCl₃Se₃: C 35.69, H 6.74; found: C 34.54, H 7.25%.

[SbCl₃(TeⁿBu₂)₃]: SbCl₃ (0.228 g, 1.0 mmol) was directly reacted with TeⁿBu₂ (0.725 g, 3.0 mmol) at room temperature, giving a dark orange/red oil; volatiles were removed . Yield: 0.19 g, 68%. ¹H NMR (CDCl₃): δ = 0.92 (*t*, [3H], CH₃), 1.41 (*m*, [2H], CH₂), 1.71 (*q*, [2H], CH₂), 2.72 (*t*, [2H], CH₂Te). ¹³C{¹H} NMR (CDCl₃): δ = 4.28 (CH₂Te), 13.5 (CH₃), 25.8 (CH₂), 34.9 (CH₂). ¹²⁵Te{¹H} NMR (CH₂Cl₂): δ = 237. IR (neat thin film /cm⁻¹): *v* = 248 br (Sb–Cl). Anal. calcd for C₂₄H₅₄SbCl₃Te₃: C 30.2, H 5.7; found: C 29.9, H 5.7%.

Low Pressure CVD experiments

Physical vapour deposited (PVD) SiO₂ on Si substrates were prepared as described previously.⁴ In a typical experiment, the reagent, followed by the PVD silica substrate tiles (usually at least four tiles of 0.5 x 8 x 20 mm) were placed edge-to-edge lengthways in a closed-end silica tube in a glovebox. The amount of precursor used was typically 40-60 mg. The tube was placed horizontally in a Lenton tube furnace (total length = 36 cm of which the central 30 cm is heated) such that the precursor protruded ca. 2 cm beyond the furnace edge. The tube was evacuated to 0.05 – 0.1 mm Hg. The furnace was then heated to the desired temperature (producing a temperature gradient that was profiled between experiments) and the temperature across the tube was allowed to stabilise. The tube was then repositioned to move the precursor closer to the heated zone until evaporation could be observed. The temperatures at which the precursors vaporised sufficiently rapidly for effective thin film growth were measured as: Bi₂Te₃: 240 °C; Sb₂Te₃: 270 °C; Sb₂Se₃: 280-300 °C; Bi₂Se₃: 280-300 °C; combined Bi₂Te₃ / Bi₂Se₃: 290-300 °C; combined Bi₂Te₃ / Sb₂Te₃: 270 °C. The position of the tube was maintained until the precursor was completely consumed), usually ca. 1 h. Once complete, the tube was allowed to cool to room temperature and transferred to the glove box. The substrates were removed and stored under N₂ before characterisation. For depositions of Bi₂(Se_{1-x}Te_x)₃ ternary thin films, appropriate ratios of $[BiCl_3(E^nBu_2)_3]$ (E =Se, Te) were first mixed in CH₂Cl₂ and then transferred to the silica CVD tube. The tube was set in the furnace such that the precursor protruded 2 cm beyond the edge of the furnace. The tube was carefully evacuated (0.05 mm Hg), whereby the CH₂Cl₂ was gradually evaporated, and then the system was ramped up to 550 °C. The tube position was then adjusted so that the precursor was moved towards the heated zone until evaporation was observed. After 1 h, the tube was cooled to room temperature and transferred to the glovebox, where the tiles were removed and stored under an N_2 atmosphere prior to analysis. The thin film deposits on the substrates were dark grey in appearance. The highest degree of substrate coverage occurred on the tiles closest to the precursor. The films were generally very well adhered to the tiles (except for the Sb₂Se₃ which were very fragile).

Thin Film Characterisation

X-ray diffraction (XRD) measurements were carried out using a Rigaku SmartLab diffractometer with a 9 kW Cu-K_α source, parallel line incident beam and a DTex250 1D detector. The crystalline phase of the films was determined by matching to a literature XRD pattern and lattice parameters calculated by further optimisation of the fit using PDXL.⁵ Raman scattering spectra of the deposited films were measured at room temperature on a Renishaw InVia Micro Raman Spectrometer using a helium-neon laser with a wavelength of 633 nm. The incident laser power was adjusted to ~1 mW for all samples. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) measurements used a Zeiss EVO LS 25 with an Oxford INCAx-act X-ray detector, or a JEOL JSM 6500 F Field Emission Scanning Electron Microscope with an INCA x-sight 7418 EDX probe with an accelerating voltage of 10 kV. High resolution SEM measurements used a field emission SEM (Jeol JSM 7500F) at an accelerating voltage of 2 kV.

Van der Pauw and Hall measurements were performed at room temperature on a Nanometrics HL5500PC at 300 K. The latter used a field of 0.5 Tesla. For each measurement, four copper probes with diameter of *ca*. 1 mm were carefully placed on the sample corners. Care was taken to ensure linear contact was obtained between each probe and the sample before each measurement.

Results and Discussion:

Binary precursors and their characterisation: The six-coordinate Sb(III) complexes, [SbCl₃(EⁿBu₂)₃] (E = Se, Te), were isolated in good yields as yellow (Se) and red (Te) oils, respectively, whilst the [BiCl₃(SeⁿBu₂)₃] was an orange oil. Samples were handled in an N₂ purged glove box and could be stored in a freezer ($-18 \, ^{\circ}$ C) for several weeks. Characterisation of new precursors by IR spectroscopy, ¹H, ¹³C{¹H}, ⁷⁷Se{¹H} and ¹²⁵Te{¹H} nuclear magnetic resonance (NMR) spectroscopy and microanalysis are consistent with a distorted octahedral coordination environment. IR spectroscopy shows strong and broad peaks corresponding to the Bi-Cl and Sb-Cl stretches; at 271 cm⁻¹ for [BiCl₃(SeⁿBu₂)₃], and at 306 and 294 cm⁻¹ for [SbCl₃(SeⁿBu₂)₃] and [SbCl₃(TeⁿBu₂)₃], respectively, consistent with literature data for similar complexes.^{6,7} The ¹H NMR spectra of [SbCl₃(SeⁿBu₂)₃] and [SbCl₃(TeⁿBu₂)₃] (CD₂Cl₂) are very little shifted from the 'free' ligand, consistent with the complexes being highly labile and extensively dissociated in solution. The [BiCl₃(SeⁿBu₂)₃] exhibits a larger high frequency shift, most notably for the CH₂ groups adjacent to the Se donor atom (complex: $\delta = 3.11$; ligand: $\delta = 2.57$ ppm), consistent with BiCl₃ being a stronger Lewis acid than SbCl₃. The ¹³C{¹H}, ⁷⁷Se{¹H} and ¹²⁵Te{¹H} NMR spectra show similar trends (Table S1).

Compound	δ(⁷⁷ Se) / ppm	δ(¹²⁵ Te) / ppm
Se ⁿ Bu ₂	167	-
[BiCl ₃ (Se ⁿ Bu ₂) ₃]	196	-
[SbCl ₃ (Se ⁿ Bu ₂) ₃]	168	-
Te ⁿ Bu ₂	-	238
[BiCl ₃ (Te ⁿ Bu ₂) ₃]	-	262
[SbCl ₃ (Te ⁿ Bu ₂) ₃]	-	237

Table S1: ⁷⁷Se{¹H} and ¹²⁵Te{¹H} NMR spectroscopic data (CH₂Cl₂, 298 K).

LPCVD of binary M_2E_3 (*M* = *Sb*, *Bi; E* = *Se*, *Te*) *thin films:* LPCVD experiments using each of the new precursors individually, established their suitability for the growth of silvery grey crystalline M_2E_3 films, and these were characterised by grazing incidence XRD, Raman spectroscopy, SEM and EDX analysis. Refined lattice parameters (Table S2) are in good agreement with literature data. For Bi₂Se₃, LPCVD experiments were typically performed at 550 °C/0.05 mmHg, since at 500 °C a mixture of phases (predominantly BiSe and Bi₃Se₄) was produced, without any evidence for Bi₂Se₃, whereas, increasing the temperature to 600 °C resulted in evaporation of the precursor, without any significant deposition onto the substrates. The phase pure Bi₂Se₃ films deposited at 550 °C were *ca*. 1 µm thick (Figs. S1 and S2).

Energy dispersive X-ray (EDX) analysis shows a Bi: Se ratio of 41.7 % : 58.3 %. Raman spectroscopy (Fig. S2b) shows two peaks at 130 and 172 cm⁻¹. These can be assigned as the E_g^2 (in plane) and the A_{1g}^2 (out of plane) vibrational modes, respectively, consistent with literature values.⁸

Sb₂Se₃ films were deposited using *ca*. 30 mg of [SbCl₃(SeⁿBu₂)₃] at 525, 550 and 575 °C (0.1 mm Hg), leading to complete evaporation of the precursor. The films produced were quite poorly adhered to the substrate (Fig. S3), with SEM images revealing a random orientation of rod- or needle-like crystallites. Quantitative EDX analysis showed that the films were within experimental error of the expected 2:3 Sb:Se stoichiometry (41% Sb : 59% Se), with no evidence for residual Cl. The lower temperature (525 °C) appears best suited for the deposition of Sb₂Se₃ from this precursor. The Raman spectrum (Fig. S4b) shows peaks at 125, 150 and 190 cm⁻¹, representing the E_g^2 , A_{2u}^2 and A_{1g}^2 modes, respectively, from Sb₂Se₃. The E_g^2 mode relates to the Se-Se bonds, the A_{2u}^2 to the vibration of Sb-Sb bonds, while the A_{1g}^2 mode represents Sb–Se stretching mode of the SbSe_{3/2}-pyramids.⁹⁻¹²

For Sb₂Te₃ films, initial depositions used [SbCl₃(TeⁿBu₂)₃] at 450 °C and 500 °C onto SiO₂ substrates. The precursor was positioned about 2 cm beyond the edge of the furnace and gradually moved closer until sublimation was observed. However, this resulted in the co-deposition of Sb₂Te₃ and crystalline tellurium. Adaptation of the method, where the CVD tube was repositioned such that once the required furnace

temperature was reached, the precursor was moved rapidly to the edge of the hot zone, allowed for 'flash evaporation' of the precursor. This allowed Sb₂Te₃ films to be obtained without co-deposition of elemental tellurium. At 450 °C the small crystallites deposited are very scattered and the film is not continuous (Figure S5a). Increasing the temperature to 500 °C to increase nucleation led to continuous films of Sb₂Te₃ being produced. SEM analysis of the films produced at 450 °C shows the crystallites to be *ca*. 100 nm in diameter, whilst those grown at 500 °C are *ca*. 1 μ m across, and the substrate coverage is much higher (Fig. S5b). In comparison with Sb₂Te₃ films deposited from MeSb(TeⁿBu₂)₂,⁹ the films deposited from the new [SbCl₃(TeⁿBu₂)₃] precursor do not show any significant preferred orientation, with some crystallites lying flat and some perpendicular to the substrate. The elemental composition of the Sb₂Te₃ film was also probed by EDX analysis, showing an Sb:Te ratio of 38 % : 62 %, within experimental error of that expected for Sb₂Te₃. There is no evidence for Cl incorporation into the film. The Raman spectrum (Fig. S6b) of the film shows peaks at 120, 140 and 165 cm⁻¹, attributed to the E_{2g}, A_{2u} and A_{1g} vibrational modes expected from Sb₂Te₃.¹³

The electrical properties of the binary M_2E_3 films were investigated by Hall (or, for Sb₂Se₃, van der Pauw) measurements (Table S2), showing that Sb₂Te₃ is a p-type semiconductor, whilst Sb₂Se₃, Bi₂Se₃ and Bi₂Te₃ are n-type. Sb₂Te₃ has a very low resistivity (1.26 x 10⁻³ Ω cm), in good agreement with literature data.^{9,14,15} Similarly, Hall measurements show that Bi₂Se₃ also has a low resistivity (8.3 x 10⁻⁴ Ω cm), with a mobility of 4.2 cm²/C and carrier density of 2.18 x 10²¹ cm⁻³.

Table S2. Lattice parameters and electrical data for M_2E_3 films with Bi_2Se_3 , Bi_2Te_3 and Sb_2Te_3 adopting the Bi_2Se_3	
structure type (R -3 mH) and Sb ₂ Se ₃ the Sb ₂ S ₃ type ($Pnma$).	

Precursor	Thin	a/Å	b/Å	c/Å	Туре	Resistivi	Mobility µ	Carrier	Ref.
	Film					ty	/ cm ² V ⁻¹ S ⁻	Concentrati	
	Deposi					/ Ωcm	1	on	
	t							N / cm ⁻³	
[BiCl ₃ (Se ⁿ Bu ₂	Bi ₂ Se ₃	4.092(14)	4.092(14)	28.59(11)	N	8.3 x 10⁻	4.2	2.18 x 10 ²¹	This
)3]						4			work
[BiCl ₃ (Te ⁿ Bu ₂	Bi ₂ Te ₃	4.378(10)	4.378(10)	30.46(5)	N	5.65(2)	56.6	1.95 x 10 ²⁰	3
)3]						x 10 ⁻⁴			
		4.3823(19	4.3823(19	30.498(17	-	-	-	-	This
)))					work
[SbCl ₃ (Se ⁿ Bu	Sb ₂ Se ₃	11.76(7)	3.938(15)	11.76(6)	-*	8.4(2) x	-*	-*	This
2)3]						104			work
[SbCl ₃ (Te ⁿ Bu	Sb ₂ Te ₃	4.254(3)	4.254(3)	30.31(5)	Р	1.26(1)	78.7 ± 1.3	6.3(1) x	This
2)3]						x 10 ⁻³		10 ¹⁹	work

* the low density of the orthorhombic Sb₂Se₃ films deposited was such that reliable Hall measurements were not possible, hence van der Pauw measurements of resistivity were undertaken.

Figure S1: (a) Top view and (b) cross sectional SEM images of Bi_2Se_3 film deposited from $[BiCl_3(Se^nBu_2)_3]$ at 550 °C onto SiO_2 .

Figure S2: (a) Grazing incidence XRD pattern for Bi_2Se_3 film deposited from $[BiCl_3(Se^nBu_2)_3]$ at 550 °C onto fused SiO_2 and an indexed pattern from bulk Bi_2Se_3 ; (b) Raman spectra recorded at different regions of the film.

Figure S3: (a) Top views and (b) cross sectional SEM images of Sb_2Se_3 film deposited from $[SbCl_3(Se^nBu_2)_3]$ at 550 °C onto SiO_2 .

Figure S4: (a) Grazing incidence XRD pattern for Sb_2Se_3 film deposited from $[SbCl_3(Se^nBu_2)_3]$ at 550 °C onto SiO_2 with an indexed pattern for bulk Sb_2Se_3 .⁸ The reflection marked with * is due to the underlying Si in the substrate and the peak marked X is due to an unknown impurity; (b) Raman spectra from several regions of the same film.

Figure S5: (a) SEM image of Sb₂Te₃ deposited from $[SbCl_3(Te^nBu_2)_3]$ at 450 °C; (b) 500 °C onto PVD SiO₂; (c) cross sectional SEM (from film deposited at 500 °C)

Figure S6: (a) Grazing incidence XRD pattern from the Sb₂Te₃ film deposited from [SbCl₃(TeⁿBu₂)₃] at 500 °C onto SiO₂, together with an indexed pattern from bulk Sb₂Te₃.¹³ The reflection marked * is from the underlying silicon substrate; (b) Raman spectra obtained from different regions of the same film.

Ternary precursor systems: NMR experiments

Samples of [BiCl₃(SeⁿBu₂)₃] and [BiCl₃(TeⁿBu₂)₃] were prepared freshly and a stock solution of each was prepared in anhydrous CH₂Cl₂ (0.033 mmol/mL), henceforth termed 'Se stock' and 'Te stock' respectively. In each of four 10 mm NMR tubes were mixed 1.5 mL of CDCl₃ with one of: (i) 1.5 mL of Te stock; (ii) 1.0 mL of Te stock with 0.5 mL of Se stock; (iii) 0.5 mL of Te stock and 1.0 mL of Se stock; (iv) 1.5 mL of Se stock. The colour of the solutions graduated from red (entirely Te) through orange (mixtures of Se and Te) to yellow (entirely Se) (Figure S7). ⁷⁷Se{¹H} and ¹²⁵Te{¹H} NMR spectra (as appropriate) were collected at room temperature (Figure S7).

A similar approach was adopted for the ternary $(Bi_{1-y}Sb_y)_2Te_3$ using samples of $[SbCl_3(Te^nBu_2)_3]$ and $[BiCl_3(Te^nBu_2)_3]$ (Figure S8)

NMR sample:	(i)	(ii)	(iii)	(iv)
Te:Se molar ratio:	1:0	2:1	1:2	0:1
δ(⁷⁷ Se) / ppm	-	162	169	196
δ(¹²⁵ Te) /ppm	262	264	300	-

Figure S7: Showing the variation in the colours of precursor solutions (i) to (iv) (left to right) as a function of the ratio of $[BiCl_3(Te^nBu_2)_3]$ to $[BiCl_3(Se^nBu_2)_3]$ and their corresponding ⁷⁷Se{¹H} and ¹²⁵Te{¹H} NMR data (CH₂Cl₂, 298 K).

NMR sample:	(i)	(ii)	(iii)	(iv)	(v)
Bi:Sb molar ratio:	1:0	2:1	1:1	1:2	0:1
δ(¹²⁵ Te) /ppm	262	250	246	238	237

Figure S8: Showing the variation in the colours of precursor solutions (i) to (v) (left to right) as a function of the ratio of of $[BiCl_3(Te^nBu_2)_3]$ and $[SbCl_3(Te^nBu_2)_3]$ in CH_2Cl_2 and their corresponding ¹²⁵Te{¹H} NMR chemical shift data.

Bi ₂ (Se _{1-x} Te _x) ₃ films	a / Å	c / Å	(Bi _{1-y} Sb _y) ₂ Te ₃ films	a / Å	c / Å
x = 0	4.140(3)	28.58(4)	Position A	4.370(11)	30.80(8)
x= 0.2	4.174(16)	28.89(9)	Position B	4.327(8)	30.54(8)
x= 0.5	4.248(5)	29.76(5)	Position C	4.249(9)	30.29(8)
x= 0.7	4.295(9)	29.89(5)			
x= 1.0	4.382(2)	30.50(2)			

Table S1 Refined lattice parameters of $Bi_2(Se_{1-x}Te_x)_3$ and $(Bi_{1-y}Sb_y)_2Te_3$ ternary films.

References

- 1. D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter and G. L. Marshall, *J. Chem. Soc., Perkin Trans.*, 1984, **2**, 429–434.
- 2. E. G. Hope, T. Kemmitt and W. Levason, *Organometallics*, 1988, **7**, 78–83.
- 3. S. L. Benjamin, C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, E. Koukharenko, W. Levason and G. Reid, *J. Mater. Chem. A*, 2014, **2**, 4865–4869.
- 4. C. H. de Groot, C. Gurnani, A. L. Hector, R. Huang, M. Jura, W. Levason and G. Reid, *Chem. Mater.*, 2012, **24**, 4442–4449.
- 5. S. Grazulis, D. Chateigner, R. T. Downs, A. F. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck and A. Le Bail, A., *J. Appl. Crystallogr.*, 2009, **42**, 726–729.
- (a) A. J. Barton, A. R. J. Genge, W. Levason and G. Reid, *J. Chem. Soc., Dalton Trans.*, 2000, 859–865;
 (b) W. Levason, N. J. Hill and G. Reid, *J. Chem. Soc., Dalton Trans.*, 2002, 4316–4317.

- (a) A. J. Barton, N. J. Hill, W. Levason, B. Patel and G. Reid, *Chem. Commun.*, 2001, 95–96; (b) A. J.
 Barton, N. J. Hill, W. Levason and G. Reid, *J. Chem. Soc., Dalton Trans.*, 2001, 1621–1627.
- 8. J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M. S. Dresselhaus and Q. Xiong, *Nano Lett.*, 2011, **11**, 2407–2414.
- 9. S. L. Benjamin, C. H. de Groot, A. L. Hector, R. Huang, E. Koukharenko, W. Levason and G. Reid, *J. Mater. Chem. C*, 2015, **3**, 423–430.
- 10. J. Wang, Z. Deng and Y. Li, *Mater. Res. Bull.*, 2002, **37**, 495–502.
- 11. A. Bera, K. Pal, D. V. S. Muthu, S. Sen, P. Guptasarma, U. V. Waghmare and A. K. Sood, *Phys. Rev. Lett.*, 2013, **110**, 1–5.
- 12. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev and S. V. Boycheva, *Mater. Lett.*, 2003, **57**, 1025–1028.
- 13. G. C. Sosso, S. Caravati and M. Bernasconi, J. Phys. Condens. Matter, 2009, 21, 095410 (6 pages).
- 14. N. Peranio, M. Winkler, Z. Aabdin, J. König, H. Böttner and O. Eibl, *Phys. Status Solidi A*, 2012, **209**, 289–293.
- 15. S. Zastrow, J. Gooth, T. Boehnert, S. Heiderich, W. Toellner, S. Heimann, S. Schulz and K. Nielsch, *Semicond. Sci. Technol.*, 2013, **28**, 035010 (6 pages).