Supporting Information for
Unraveling Luminescence Mechanisms in Zero-Dimensional Halide Perovskites

Dan Han1,2,3,†, Hongliang Shi4,†*, Wenmei Ming3, Chenkun Zhou5, Biwu Ma5, Bayrammurad Saparov6, Ying-Zhong Ma3, Shiyou Chen2, and Mao-Hua Du3,*

1Key Laboratory of Polar Materials and Devices (Ministry of Education) and 2Department of Physics, East China Normal University, Shanghai 200241, China
3Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China
5Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
6Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA

Keywords: Halide perovskite; (C\textsubscript{4}N\textsubscript{2}H\textsubscript{14}X\textsubscript{4})\textsubscript{4}SnX\textsubscript{6}; Cs\textsubscript{4}PbBr\textsubscript{6}; Luminescence; DFT calculations

†Both authors contributed equally to this work.

*Corresponding Author: Mao-Hua Du (mhdu@ornl.gov); Hongliang Shi (hlshi@buaa.edu.cn)
S1. Computational Details

All calculations were based on density functional theory (DFT) implemented in the VASP code. The interaction between ions and electrons was described by projector augmented wave method. The kinetic energy cutoff of 400 eV for the plane-wave basis was used for all calculations except the dielectric constant calculations, in which a higher energy cutoff of 520 eV was used. Experimental lattice parameters of (C₄N₂H₁₄Br)₄SnBr₆ [space group P -1 (# 2); a = 10.2070 Å, b = 10.6944 Å, c = 18.5996 Å, α = 94.043°, β = 102.847°, γ = 97.904°], (C₄N₂H₁₄I)₄SnI₆ [space group P -1 (# 2); a = 10.7464 Å, b = 10.8924 Å, c = 11.1796 Å, α = 94.043°, β = 102.847°, γ = 97.904°] and Cs₄PbBr₆ [space group R-3C (#167); a = b = c = 9.8019 Å, α = β = γ = 88.8480°] were used while the atomic positions were fully relaxed until the residual forces were less than 0.02 eV/Å.

S2 Electronic Structure

The calculated band gaps of (C₄N₂H₁₄Br)₄SnBr₆, (C₄N₂H₁₄I)₄SnI₆, and Cs₄PbBr₆ (as shown in the band structures in Figure 2) are 3.46 eV, 2.90 eV, and 3.19 eV, respectively, at the PBE level, which are underestimated due to the well-known band gap error in PBE calculations; they are increased substantially by including Fock exchange in hybrid PBE0 calculations (Table S1). (C₄N₂H₁₄X)₄SnX₆ (X = Br, I) have direct band gaps at the Y point. The band gap of Cs₄PbBr₆ is indirect; the VBM is at the Γ point while the CBM is located near the Z point along the Γ-Z direction. Due to the strong charge localization in 0D metal halides, the optical emission and the onset of the optical absorption are due to strongly localized excitons instead of the band-to-band optical transition. Thus, the calculated band gaps should not be compared with the experimentally measured optical absorption and excitation energies.

Table S1. Band gaps (in eV) of (C₄N₂H₁₄Br)₄SnBr₆, (C₄N₂H₁₄I)₄SnI₆, and Cs₄PbBr₆ calculated using PBE and hybrid PBE0 methods. Spin-orbit coupling is included in the calculations for Cs₄PbBr₆ only.

<table>
<thead>
<tr>
<th></th>
<th>PBE</th>
<th>PBE0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C₄N₂H₁₄Br)₄SnBr₆</td>
<td>3.46</td>
<td>5.10</td>
</tr>
<tr>
<td>(C₄N₂H₁₄I)₄SnI₆</td>
<td>2.90</td>
<td>4.43</td>
</tr>
<tr>
<td>Cs₄PbBr₆</td>
<td>3.19</td>
<td>4.80</td>
</tr>
</tbody>
</table>
S3 Dielectric Constant

Calculated dielectric constants of 0D halide perovskites \((C_4N_2H_{14}Br)_4SnBr_6\), \((C_4N_2H_{14}I)_4SnI_6\), and \(Cs_4PbBr_6\) as well as those of 3D halide perovskites \(CH_3NH_3SnBr_3\), \(CH_3NH_3SnI_3\), and \(CsSnBr_6\) are shown in Table S2. They were calculated based on experimental lattice parameters, which are shown in Sec. S1 for \((C_4N_2H_{14}Br)_4SnBr_6\), \((C_4N_2H_{14}I)_4SnI_6\), and \(Cs_4PbBr_6\), and are taken from References 7 and 8 and 9 for \(CH_3NH_3SnBr_3\), \(CH_3NH_3SnI_3\), and \(CsSnBr_3\), respectively.

The main difference in the dielectric constant between the 0D and the 3D compounds is the ionic contribution as shown in Table S2. The mixed ionic-covalent character of the 3D halides that contain \(ns^2\) cations (which has outer electron configuration of \(ns^2\) such as \(Pb^{2+}\) and \(Sn^{2+}\)) causes strong lattice polarization in response to the electric field, which leads to enhanced Born effective charges and large static dielectric constant (dominated by the ionic contribution).\(^{10-12}\) This effect diminishes in 0D halide perovskites due to the reduced concentration of the \(ns^2\) cation and the reduced Born effective charges. The lack of the long-range lattice polarization in 0D halide perovskites lowers the Born charges. This is evidenced in Table S3, where the Born charges of 0D \(Cs_4PbBr_6\) are compared with those of 3D \(CsPbBr_3\). These two inorganic compounds are chosen because both have only one inequivalent Pb and Br sites, which make the comparison simple. The results in Table S3 show that the Born charges of both Pb and Br ions in \(Cs_4PbBr_6\) and \(CsPbBr_3\) are enhanced compared to their nominal ionic changes (which are +2 for Pb and -1 for Br); but the Born charges in 0D \(Cs_4PbBr_6\) are significantly lower than those in 3D \(CsPbBr_3\).
Table S2. Calculated static dielectric constants ε_{st} [including the electronic (ε_{∞}) and the ionic (ε_{ion}) contributions] of (C$_4$N$_2$H$_{14}$Br)$_4$SnBr$_6$, (C$_4$N$_2$H$_{14}$I)$_4$SnI$_6$, Cs$_4$PbBr$_6$, CH$_3$NH$_3$SnBr$_3$, CH$_3$NH$_3$SnI$_3$, and CsSnBr$_3$ at their room-temperature phases. Note that these are traces of the dielectric tensors.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ε_{∞}</th>
<th>ε_{ion}</th>
<th>ε_{st}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C$_4$N2H${14}$Br)$_4$SnBr$_6$</td>
<td>3.0</td>
<td>8.9</td>
<td>11.9</td>
</tr>
<tr>
<td>(C$_4$N2H${14}$I)$_4$SnI$_6$</td>
<td>3.3</td>
<td>4.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Cs$_4$PbBr$_6$</td>
<td>3.1</td>
<td>4.6</td>
<td>7.7</td>
</tr>
<tr>
<td>CH$_3$NH$_3$SnBr$_3$</td>
<td>4.7</td>
<td>27.3</td>
<td>32.0</td>
</tr>
<tr>
<td>CH$_3$NH$_3$SnI$_3$</td>
<td>5.6</td>
<td>23.9</td>
<td>29.5</td>
</tr>
<tr>
<td>CsPbBr$_3$</td>
<td>4.6</td>
<td>14.6</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Table S3. Calculated Born effective charge tensors for Pb and Br in Cs$_4$PbBr$_6$ and CsPbBr$_3$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Atom Type</th>
<th>Wyckoff position</th>
<th>Born effective charge tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs$_4$PbBr$_6$</td>
<td>Pb</td>
<td>6b</td>
<td>$\begin{pmatrix} 2.960 & 0.096 & -0.004 \ -0.003 & 2.958 & 0.096 \ 0.096 & -0.006 & 2.956 \end{pmatrix}$</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>36f</td>
<td>$\begin{pmatrix} -1.939 & -0.269 & 0.167 \ -0.308 & -1.076 & 0.048 \ 0.223 & 0.016 & -1.038 \end{pmatrix}$</td>
</tr>
<tr>
<td>CsPbBr$_3$</td>
<td>Pb</td>
<td>6b</td>
<td>$\begin{pmatrix} 3.922 & -0.441 & 0.493 \ -0.003 & 3.920 & -0.000 \ -0.445 & -0.005 & 3.999 \end{pmatrix}$</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>36f</td>
<td>$\begin{pmatrix} -0.807 & -0.020 & 0.0 \ 0.059 & -0.719 & 0.0 \ 0.0 & 0.0 & -4.218 \end{pmatrix}$</td>
</tr>
</tbody>
</table>
S4. Exciton Trapping at Halogen Vacancies

To understand exciton trapping at halogen vacancies, we studied all the symmetrically inequivalent halogen vacancies in all three 0D halide perovskites studied here. The results show that the extremely narrow conduction band exposes the metal ion dangling bond (DB) inside the band gap. Taking V_{Br}^{+} in $(C_4N_2H_4Br)_4SnBr_6$ as an example, the DOS of the most stable V_{Br}^{+} (which is adjacent to a Sn ion) is shown in Figure S3. The empty V_{Br}^{+} defect level (Sn-5p DB level) is deep inside the band gap. When the exciton is trapped at V_{Br}^{+}, the electron occupies the Sn-5p DB while the hole resides in the Sn-5s-Br-4p hybridized orbital on the SnBr$_4$ plane which is approximately perpendicular to the Sn-5p DB (Figure S4). As a result, one Sn-Br bond is elongated due to the electron excitation and four other Sn-Br bonds are shortened due to the hole-enhanced Coulomb attraction. The exciton trapping at halogen vacancies in $(C_4N_2H_4I)_4SnI_6$ and Cs$_4$PbBr$_6$ invoke similar structural distortion.

S5. Discussion of Experimentally Measured Optical Properties in Green-Emitting Cs$_4$PbBr$_6$

The excitation and the emission energies (2.3 eV – 2.4 eV), the narrow emission band (15 nm – 24 nm)$^{13-17}$, and the fast PL decay (a few to a few tens of ns)$^{13-17}$ observed in green-emitting Cs$_4$PbBr$_6$ all agree well with those observed in CsPbBr$_3$. The measured band gap of green-emitting Cs$_4$PbBr$_6$ is likely the band gap of trace CsPbBr$_3$ in Cs$_4$PbBr$_6$. The small band gap difference between bulk CsPbBr$_3$ and green-emitting Cs$_4$PbBr$_6$ (a few meV)20 could be due to the strained CsPbBr$_3$ inclusion within the matrix of Cs$_4$PbBr$_6$. Tensile strain in CsPbBr$_3$ should increase the band gap because it is known that thermal expansion of CsPbBr$_3$ increases the band gap18 due to the antibonding nature of the VBM21.

A significant exciton binding energy (~353 meV14; 303.9 meV22; 222 meV13; 159 meV16) was obtained in green-emitting Cs$_4$PbBr$_6$ through the temperature-dependent PL measurement and was used as an evidence of intrinsic luminescence from Cs$_4$PbBr$_6$ since the exciton binding energy in CsPbBr$_3$ is much smaller (~40 meV).13 However, the measured significant exciton binding energy does not reconcile with the above-band-gap emission.14 Also, our calculations shows a substantially larger exciton binding energy of 1.25 eV (relative to free excitons) in Cs$_4$PbBr$_6$ (Table 1). The excitation energies used in temperature-dependent PL measurements [i.e., 2.62 eV (473 nm)14,16, 3.27 eV (380 nm)22, and 3.40 eV (365 nm)22] are in fact below the
calculated band gap of 4.8 eV and the calculated and measured excitonic absorption energies shown in Table 2 in the main text. Therefore, bulk Cs$_4$PbBr$_6$ was not excited in those experiments. It is likely that CsPbBr$_3$ was excited instead. The thermal quenching of the green emission is not necessarily the result of exciton dissociation. Other mechanisms, e.g., exciton hopping from the CsPbBr$_3$ inclusion to defects near the CsPbBr$_3$/Cs$_4$PbBr$_6$ interface, can also cause thermal quenching of the green emission. Therefore, the exciton binding energy may not be deduced from the temperature-dependent PL measurement.

Analysis of PL intensity versus excitation power in Cs$_4$PbBr$_6$ displays a power law dependence for the green emission. The value of the exponential coefficient is 0.7, which is below the range (between 1 and 2) that typically corresponds to excitonic emission. Such emission saturation may occur for defect-induced emission when nearly all the defects are excited by high-power excitation; therefore, this behavior can be explained by the CsPbBr$_3$ inclusions in Cs$_4$PbBr$_6$, which essentially act as defects. Again, this measurement was performed by using excitation [3.06 eV (405 nm)] below the excitonic absorption, which can excite CsPbBr$_3$ but not Cs$_4$PbBr$_6$.

The above analysis strongly supports the view that the green emission observed in Cs$_4$PbBr$_6$ is not due to the intrinsic properties of Cs$_4$PbBr$_6$ but is rather the result of CsPbBr$_3$ inclusions embedded within bulk Cs$_4$PbBr$_6$.
Figure S1. Schematics of exciton excitation and emission in (a) $(\text{C}_4\text{N}_2\text{H}_{14}\text{Br})_4\text{SnX}_6$ ($X = \text{Br, I}$) and (b) Cs_4PbBr_6. Note that the excited-state relaxation and the Stokes shift in Cs_4PbBr_6 are relatively small compared to those in $(\text{C}_4\text{N}_2\text{H}_{14}\text{Br})_4\text{SnX}_6$ ($X = \text{Br, I}$). For simplicity, the intersystem crossing that converts the spin-singlet to the spin-triplet exciton is omitted in the diagram.
Figure S2. Density of states (DOS) of (a) the unrelaxed spin-singlet exciton and (b) the relaxed spin-triplet exciton in (C₄N₂H₁₄Br)₄SnBr₆, calculated using the PBE0 functional.
Figure S3. Density of states (DOS) of the V_{Br}^+-induced level inside the band gap of $(C_4N_2H_{14}Br)_4SnBr_6$, calculated using the PBE0 functional.
Figure S4. Partial densities of the electron and the hole wavefunctions in the exciton trapped at V_{th}^+ in $(C_4N_2H_{14}Br)_4SnBr_6$.
References: