Absolute up-conversion quantum efficiency reaching 4% in β-NaYF$_4$:Yb$^{3+}$,Er$^{3+}$ micro-cylinders achieved by Li$^+$/Na$^+$ ion-exchange

Shaohua Fan1,2, Guojun Gao1,3,*, Shiyu Sun1, Sijun Fan1, Hongtao Sun4, Lili Hu1,*

1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

2University of Chinese Academy of Sciences, Beijing 100049, China

3Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany

4College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

*Corresponding authors: G. Gao: guojun.gao@hotmail.com; L. Hu: hulili@siom.ac.cn

Fig. S1. The variation of decay curves of green UC emission for Li$^+$/Na$^+$ IEM β-NaYF$_4$:20$\%$Yb$^{3+}$,2$\%$Er$^{3+}$ synthesized with LiF/NaF = 40/60 dependent on the pump power density (976 nm, 0.8 – 4.8 W/cm2).