Persistent luminescence warm-light LEDs based on Ti-doped RE₂O₂S materials prepared by rapid and energy-saving microwave-assisted synthesis

José Miranda Carvalho, Cássio Cardoso Santos Pedroso, Ian Pompermayer Machado, Jorma Hölsä, Lucas Carvalho Veloso Rodrigues, Pawel Głuchowski, Mika Lastusaari, Hermi Felinto Brito*

a. Institute of Physics, University of São Paulo, 05508-000, São Paulo-SP, Brazil
b. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-900, São Paulo-SP, Brazil
c. Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-900, São Paulo-SP, Brazil
d. University of the Free State, Department of Physics, Bloemfontein, ZA-9300, South Africa.
e. Institute of Low Temperature and Structure Research, PL-50422 Wroclaw, Poland
f. University of Turku, Department of Chemistry, FI-20014 Turku, Finland
g. Turku University Centre for Materials and Surfaces (MatSurf), FI-20014 Turku, Finland

Supporting Information

Figure S1. Microwave-assisted solid-state synthesis setup to obtain the oxysulfide materials. Both external and internal crucible are made from alumina. The microwave susceptor used was granular carbon. The thermal insulation is a low-density aluminosilicate brick. All the materials were prepared in a conventional domestic microwave oven.
Figure S2. Correlation between the temperature of the sample crucible (surrounded by the activated charcoal) and the microwave exposition time. Each temperature point was measured with a Homis H811-451 hand pyrometer.
Figure S3. X-ray powder diffraction patterns of the RE$_2$O$_5$:Ti,Mg$^{2+}$ [RE: La (left) and Y (right)] materials obtained with 25 minutes of microwave irradiation by microwave-assisted solid-state synthesis, with the Rietveld refinement results.
Figure S4. X ray powder diffraction pattern of the Y_2O_2S material obtained with 300% of excess of sulfur in the precursor, using the same pre adjusted microwave program.
Figure S5. SR-XANES spectra at the sulfur K-edge of the standards materials for sulfur speciation.
Figure S6. Synchrotron Radiation VUV-UV spectra (left) and derivative of the intensity (right) of the RE$_2$O$_2$S:Ti,Mg$^{2+}$ materials obtained by the microwave-assisted solid-state method.
Figure S7. Photoluminescence emission spectra of the light emitting diodes devices fabricated from a AlGaN LED covered with a polydimethylsiloxane matrix doped with 10 %-wt of the RE$_2$O$_2$S:Ti,Mg$^{2+}$ (RE: Gd and Y) materials.