Supporting materials for

An Attempt to Adopt Aggregation-Induced Emission to Study Organic-Inorganic Composite Coating Materials

Weili Li\(^a\)\(^*,\) Wei Yao\(^a\), Mike Tebyetekerwa\(^b\)\(^,\) Jijun Tang\(^a\), Shengyu Yan\(^b\), Meifang Zhu\(^b\), Rong Hu\(^c\), Anjun Qin\(^c\), Ben Zhong Tang\(^c\)\(^,\)d, and Zexiao Xu\(^e\)

\(^a\)School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P.R. China

\(^b\)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P.R. China

\(^c\)Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P.R. China

\(^d\)Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China

\(^e\)Suzhou Jiren Hi-Tech Material Co., Ltd, Suzhou 215143, P.R. China

\(^f\)Present Author Address: Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
Fig.S1 1H NMR of TPE-DBTAB
Fig.S2 FTIR spectra of the testing samples, Na⁺-MMT, TPE-DBTAB and TPE-DBTAB modified MMT
Fig.S3 X-ray diffraction patterns of the testing samples, MMT and TPE-DBTAB modified MMT
Fig.S4 ξ potential of the testing samples, MMT and TPE-DBTAB modified MMT
Fig.S5 TGA result of the testing samples, MMT and TPE-DBTAB modified MMT
Fig.S6 EIS of the dried coating varied with its soaking time