Supporting Information

Effectively realizing broadband spectral conversion of UV/visible to near-infrared emission in (Na,K)Mg(La,Gd)TeO₆:Mn⁴⁺, Nd³⁺, Yb³⁺ materials for c-Si solar cells via efficient energy transfer

Kai Li* and Rik Van Deun**

L³ – Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium

Fig. S1 A schematic diagram of c-Si solar cell model.

(Figure used with permission from K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi,K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto, *Nat. Energy*, 2017, 2,

17032.)

Fig. S2 PL excitation and emission spectra of NML: $0.02Mn^{4+}$ (a), NMG: $0.01Mn^{4+}$ (b) and KML: $0.006Mn^{4+}$ (c) and their respective Gaussian decompositions for the excitation spectra.

Fig. S3 PL excitation and emission spectra of NML: $0.30Yb^{3+}$ (a), NMG: $0.10Yb^{3+}$ (b) and KML: $0.10Yb^{3+}$ (c).

Fig. S4 Decay curves for (a) NML: $0.02Mn^{4+}$ and NML: $0.02Mn^{4+}$, $0.30Yb^{3+}$ ($\lambda_{ex} = 365$ nm, $\lambda_{em} = 705$ nm), (b) NMG: $0.01Mn^{4+}$ and NML: $0.01Mn^{4+}$, $0.10Yb^{3+}$ ($\lambda_{ex} = 365$ nm, $\lambda_{em} = 697$ nm), and (c) NML: $0.006Mn^{4+}$ and NML: $0.006Mn^{4+}$, $0.10Yb^{3+}$ ($\lambda_{ex} = 365$ nm, $\lambda_{em} = 696$ nm)

Table S1 Decay times, energy transfer efficiencies (η_T) and energy transfer probability (P_T) for NML:0.02Mn⁴⁺, xNd³⁺ ($\lambda_{ex} = 365$ nm, $\lambda_{em} = 705$ nm), NMG:0.01Mn⁴⁺, yNd³⁺ ($\lambda_{ex} = 365$ nm, $\lambda_{em} = 697$ nm) and NML:0.006Mn⁴⁺, zNd³⁺ ($\lambda_{ex} = 365$ nm, $\lambda_{em} = 696$ nm).

Concentration (x/y/z)	Decay time (ms)	energy transfer	energy transfer
		efficiency $(\eta_{\rm T})$	probability $(P_{\rm T})/{\rm ms}^{-1}$
$\mathbf{x} = 0$	0.986	×	×
x = 0.002	0.887	0.0837	0.09434
x = 0.005	0.826	0.1467	0.1776
x = 0.01	0.729	0.2469	0.3387
x = 0.02	0.667	0.3110	0.4662
x = 0.03	0.611	0.3688	0.6036
x = 0.04	0.561	0.4205	0.7495
y = 0	0.585	×	×
y = 0.004	0.484	0.1726	0.3567
y = 0.012	0.380	0.3504	0.9222
y = 0.02	0.269	0.5402	2.0008
y = 0.03	0.186	0.6821	3.6670
y = 0.04	0.153	0.7385	4.8270
z = 0	1.315	×	×
z = 0.002	1.159	0.1186	0.1024
z = 0.005	0.946	0.2806	0.2966
z = 0.01	0.807	0.3863	0.4787
z = 0.015	0.722	0.4510	0.6246
z = 0.02	0.605	0.5400	0.8924
z = 0.03	0.511	0.6114	1.1965
z = 0.04	0.419	0.6814	1.6262