Electronic Supplementary Information

Design of Novel Graphdiyne-based Materials with Large Second-Order Nonlinear Optical Properties

Xiaojun Li,a

aThe Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, Shaanxi, P. R. China

Contents:

- Simulated infrared spectrum of the GDY cluster, Fig. S1;
- Electrostatic potential maps of the GDY and AM3@GDY clusters, Fig. S2;
- The crucial transitions of crucial excited energies for the AM3@GDY clusters, Table S1
Fig. S1. Simulated infrared spectrum of the GDY cluster, obtained at the B3LYP/6-31+G(d) level of theory. The scaling factor of 0.953 was applied to correct all calculated vibrational frequencies. The vibrations for the C≡C stretching modes are specially labeled.
Fig. S2. Electrostatic potential maps of the (a) GDY, (b) Li₃@GDY, (c) Na₃@GDY, and (d) K₃@GDY clusters.
Table S1 Mean dipole moment (μ_0, in a.u.), static polarizability (α_0, in a.u.), the static first hyperpolarizability (β_{tot}, in a.u.), transition energy (ΔE, in eV), maximum oscillator strength (f_0, in a.u.), the change in dipole moment ($\Delta \mu$, in a.u.), and crucial transitions of crucial excited energies for the AM$_3$@GDY (AM = Li, Na, K) clusters.

<table>
<thead>
<tr>
<th>Clusters</th>
<th>μ_0</th>
<th>α_0</th>
<th>β_{tot}</th>
<th>ΔE</th>
<th>f_0</th>
<th>$\Delta \mu$</th>
<th>Crucial Transitions*</th>
</tr>
</thead>
</table>
| Li$_3$@GDY | 0.84 | 671.19 | 9208.88 | 3.32 | 0.178 | 2.186 | β(H \rightarrow L+16) (35%),
| | | | | | | | β(H \rightarrow L+20) (19%) |
| Na$_3$@GDY | 1.62 | 786.44 | 69788.24 | 2.75 | 0.232 | 3.444 | α(H \rightarrow L+10) (26%),
| | | | | | | | α(H \rightarrow L+5) (11%) |
| K$_3$@GDY | 3.32 | 1065.49 | 161201.31 | I: 2.98 | 0.777 | 10.650 | β(H-2 \rightarrow L) (14%),
| | | | | | | | β(H-1 \rightarrow L+1) (13%) |
| | | | | II: 1.91 | 0.315 | 6.735 | α(H \rightarrow L+4) (34%),
| | | | | | | | β(H \rightarrow L+2) (22%) |

*H = HOMO, L = LUMO.