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General methods and materials

Chemicals were purchased from Sigma-Aldrich and TCI Europe and used as received without further
purification. Compounds 1a and 1g were synthesized according to the procedures described earlier.
'H and 3C NMR spectra were taken on Bruker Avance 111 400 (400 MHz) or Bruker Avance 111 700
(700 MHz) spectrometer at room temperature. All the data are given as chemical shifts in & (ppm).
The course of the reactions products was monitored by TLC on ALUGRAM SIL G/UV254 plates
and developed with UV light. Silica gel (grade 9385, 230400 mesh, 60 A, Aldrich) was used for
column chromatography. Elemental analysis was performed with an Exeter Analytical CE-440
elemental analyser, Model 440 C/H/N/. MS analysis was performed using matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) Autoflex instrument from Bruker, while high
resolution MS/MS data were obtained with Q Exactive HF Hybrid Quadrupole Orbitrap instrument
equipped with nanoelectrospray ionization (nanoESI) Triversa Nanomate source from Advion. All
measurements were done in positive polarity.

Computational details

The theoretical calculations were performed using TURBOMOLE version 7.0 software®. Molecular
structures of the V990* and V990(tBP*) were optimized using Becke's three parameter functional,
B3LYP?23, and def2-SVP*® basis set in vacuum. Optimized structure and molecular orbitals were
visualized with TmoleX version 4.1 software®.

13NIMR spectra of V990(tBP*) was predicted by means of GIAO DFT method, using B3LYP/def2-
SVP level of theory, and tetramethylsilane (TMS) as a reference. For the simplicity, solvent and anion
effects were omitted.

Synthesis

Material V886 was synthesized according to an earlier described procedure’.
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Scheme S1. Synthesis of the V990
Synthesis of the 1a

BrBr
/

To a solution of 3,6-dibromo-9H-carbazole (2 g, 6.15 mmol) and iodoethane (0.64 ml, 8 mmol) in
dimethyl sulfoxide (20 ml) powdered KOH was added (1 g). The reaction mixture was stirred at room
temperature (25°C) for 2 h, and after reaction completion (TLC, acetone:n-hexane 1:4 v:v) distilled
water (H2Odist) was added. The formed precipitate was filtered off, washed with H2Ogist and
isopropanole:n-hexane (1:1 v:v) mixture to collect final compound as a white crystalline powder.
Yield: 2.04 g, 94% (Tm=143.5-145°C).

3,6-dibromo-9-ethyl-9H-carbazole; 1la

IH NMR (400 MHz, CDCls) & 8.14 (d, J = 1.9 Hz, 2H), 7.51 (dd, J = 8.5, 1.9 Hz, 2H), 7.19 (d, J =
8.5 Hz, 2H), 4.20 (d, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H).

13C NMR (101 MHz, CDCls) § 138.73, 128.97, 123.49, 123.25, 111.92, 110.10, 37.79, 13.68.
NMR is in a good agreement with the previously reported data.?

Anal. calcd for Ci14sH11NBr2: C, 47.63; H, 3.14; N, 3.97; found: C, 47.52; H, 3.10; N, 3.96.
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Synthesis of the V990

3,6-(4,4-dimethoxydiphenylamino)-9-ethyl-9H-carbazole; V990

3 4
\O/Q/NN©O/
)

A solution of 1a (1.76 g, 5 mmol), 4,4’-dimethoxydiphenylamine (3.44 g, 15 mmol) in anhydrous
toluene (30 mL) was purged with argon for 20 minutes. Afterwards, palladium(ll) acetate (13.4 mg,
0.06 mmol), tri-tert-butylphosphonium tetrafluoroborate (23.2 mg, 0.08 mmol) and sodium tert-
butoxide (1.44 g, 15 mmol) were added and the solution was refluxed under argon atmosphere for 20
hours. After cooling to room temperature, reaction mixture was filtered through Celite. 100 mL of
distilled water was added to the filtrate and extraction was done with ethyl acetate. The combined
organic layer was dried over anhydrous Na>SQg, filtered and solvent evaporated. The crude product
was purified by column chromatography using THF:n-hexane (1:10 v:v) as eluent. The obtained
product was precipitated from 20% solution in THF into 15-fold excess of hexane. The precipitate
was filtered off and washed with methanol to collect final compound as a yellow powder. Yield:
1.38 g, 70.3%.

Rf =0.16; THF:n-hexane (1:10 v:v)

IH NMR (700 MHz, DMSO) & 7.68 (s, 2H), 7.51 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 6.89
—6.77 (M, 16H), 4.37 (m, 2H), 3.69 (s, 12H), 1.32 (t, J = 6.7 Hz, 3H).

13C NMR (176 MHz, DMSO) & 154.13, 142.11, 139.91, 136.73, 124.43, 123.62, 122.65, 117.03,
114.62, 110.10, 55.16, 37.10, 13.89.

Anal. calcd for C42H39N304: C, 77.63; H, 6.05; N, 6.47; found: C, 77.50; H, 5.98; N, 6.50.
Ca2H39N304 [V990*] exact mass = 649.2941 Da, observed mass MALDI-TOF-MS) = 649.314 Da
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'H NMR and 3C NMR spectra of V990

V990 1H NMR 700MHz
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Figure S1. *H NMR spectrum of V990 from dmso-d6
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V990 13C NMR 176 MHz
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Figure S2. 13C NMR spectrum of V990 from dmso-d6
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Figure S3. MALDI-TOF-MS spectrum in wide m/z range of VV990.
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Figure S4. MALDI-TOF-MS spectrum in narrow m/z range of V990.

Oxidation of the V990

VO90*(TFSI")
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To a 1.38 g (2.12 mmol) of V990, dissolved in 75 ml of DCM, 0.82 g (2.12 mmol) of AgTFSI was
added. Solution immediately became deep blue-green. After stirring at room temperature for 24 h
precipitated silver was filtered off through the plug of celite. DCM was evaporated, and resulting

residue was precipitated from 20% solution in DCM into 15-fold excess of ether. The precipitate was
filtered off and dried under vacuum resulting in the deep blue-green powder. Yield: 1.62 g, 82.1%.
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Anal. calcd for CaaH39FsN4OsgS2: C, 56.83; H, 4.23; N, 6.02; found: C, 56.67; H, 4.21; N, 6.05.

Pyridination of the V990*(TFSI")

1-{3,6-bis[bis(4-methoxyphenyl)amino]-9-ethyl-9H-carbazol-4-yl}-4-tert-butylpyridin-1-ium
bis(trifluoromethanesulfonyl)azanide; V990(tBP*)(TFSI")

900 mg of V990*(TFSI") was dissolved in 3 ml of the freshly distilled tBP and the resulting solution
was heated to 60°C. After 20 min, when color changed from intensive blue-green to dark orange, tBP
was distilled off on the rotorvapor. Residue was purified by column chromatography by using
acetone:n-hexane (1:4 v:v) as eluent, and consequentially strengthening it to the acetone:n-hexane
(4:1 v:v) eluent. Yield of V990(tBP*)(TFSI"): 397 mg, 38.5%.

Also V990 was obtained (see full text for the description). Yield of V990: 208 mg, 33.0%.
Rt =0.06; acetone:n-hexane (4:1 v:v)

'H NMR (400 MHz, DMSO) & 8.98 (d, J = 6.5 Hz, 2H), 7.96 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 6.9 Hz,
2H), 7.64 (d, J = 8.9 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.05 (dd, J = 8.8, 2.2 Hz, 1H), 6.81-6.66 (m,
16H), 6.16 (d, J = 2.1 Hz, 1H), 4.52 (d, J = 7.1 Hz, 2H), 3.73-3.64 (m, 12H), 1.43- 1.34 (m, 3H), 1.19
(s, 9H).

13C NMR (101 MHz, DMSO) & 172.46, 154.85, 154.60, 146.10, 141.07, 140.80, 140.16, 138.04,
136.03, 133.96, 131.01, 124.95, 124.48, 123.63, 123.46, 121.07, 118.66, 117.88, 116.68, 114.71,
114.66, 55.28, 55.06, 36.33, 29.17, 14.05.

13C NMR (101 MHz, acetone-d6) & 174.36, 156.61, 156.14, 146.96, 142.83, 142.36, 141.50, 139.46,
137.51, 135.48, 132.05, 127.40, 126.96, 126.40, 125.59, 125.19, 124.68, 122.64, 119.90, 119.44,
118.07, 115.60, 115.44, 114.36, 114.32, 111.75, 55.82, 55.62, 38.65, 37.50, 14.37.

Anal. calcd for CssHs1FsNs50sS2: C, 59.82; H, 4.83; N, 6.58; found: C, 59.71; H, 4.86; N, 6.54.

Cs1H51N4O4* [VO90(tBP*)] exact mass = 783.3910 Da, observed mass (MALDI-TOF-MS) =
783.394 Da.
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!H NMR and 3C NMR spectra of V990(tBP*)(TFSI)

V990(Py+)(TFSI-) TH NMR 400MHz
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Figure S5. *H NMR spectrum of V990(tBP*)(TFSI") from dmso-d6
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V990(Py+)(TFSI-) 13C NMR
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Figure S6. 3C NMR spectrum of V990(tBP*)(TFSI") from dmso-d6

V990(Py+)(TFSI-) 13C NMR acetone-d6
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Figure S7. 3C NMR spectrum of V990(tBP*)(TFSI") from acetone-d6
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DFT predicted *C NMR spectra of VV990(tBP*)
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Figure S8. DFT predicted 3C NMR spectrum of V990(tBP*)
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Oxidation of the V886
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To a 500 mg (0.37 mmol) dissolved in 30 ml of DCM 288 mg (0.74 mmol) of AgTFSI was added.
Solution immediately became deep blue-green. After stirring at room temperature for 24 h
precipitated silver was filtered off through the plug of celite. DCM was evaporated, and resulting
residue was precipitated from 20% solution in DCM into 15-fold excess of ether. The precipitate was
filtered off and dried under vacuum resulting in the deep blue-green powder. Yield: 453 mg, 64.3%.

Anal. calcd for CooH76F12NsO16S4: C, 57.98; H, 4.02; N, 5.88; found: C, 57.78; H, 4.06; N, 5.94.

Pyridination of the VV8862*(TFSI")2

400 mg of V8862*(TFSI)2 was dissolved in 1.5 ml of the freshly distilled tBP and the resulting
solution was heated to 60°C. After 20 min, when color changed from intensive blue-green to dark
orange, tBP was distilled off on the rotorvapor. Residue was purified by column chromatography by
using THF:n-hexane (1:4 v:v) as eluent, and consequentially strengthening it to the THF:n-hexane
(3:2 v:v) eluent. Three products were separated (see full text for the description).

Yield of VV886(tBP*)(TFSI"): 140 mg, 37.9%.
Yield of V886(tBP*)2(TFSI)2: 78 mg, 17.1%.
Yield of V886: 58 mg, 20.5%.
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1-(9-{[2-({3,6-bis[bis(4-methoxyphenyl)amino]-9H-carbazol-9-yl}methyl)phenyl]methyl}-3,6-
bis[bis(4-methoxyphenyl)amino]-9H-carbazol-4-yl)-4-tert-butylpyridin-1-ium
bis(trifluoromethanesulfonyl)azanide; V886(tBP*)(TFSI")

N /
O o) o

:I‘U):O

0O O
/

2
:N N: O\é
0,55 O Qo
2 ¢

A RN
Rf =0.31; THF:n-hexane (3:2 v:v)

IH NMR (400 MHz, DMSO-ds) & 9.04 (d, J = 6.5 Hz, 2H), 7.93 — 7.83 (m, 3H), 7.76 (d, J = 2.2 Hz,
2H), 7.56 — 7.46 (m, 3H), 7.39 (d, J = 8.8 Hz, 1H), 7.18 — 7.02 (m, 5H), 6.93 — 6.66 (M, 32H), 6.52
6.42 (m, 2H), 6.24 (d, J = 2.1 Hz, 1H), 5.99 (s, 2H), 5.92 (s, 2H), 3.72 — 3.66 (M, 24H), 1.22 (s, 9H).

13C NMR (101 MHz, DMSO) & 154.90, 154.68, 154.27, 142.02, 140.73, 140.53, 140.11, 137.49,
125.01, 124.58, 123.83, 123.49, 122.92, 121.08, 118.94, 117.88, 114.68, 55.27, 55.18, 55.05, 36.37,
29.20.

Anal. calcd for CogHssFsNgO12S,: C, 67.56; H, 5.04; N, 6.37; found: C, 67.42; H, 5.00; N, 6.39.

CogHgoFsNgO12S2 [V886(tBP*)(TFSI)+H™] exact mass = 1759.5946 Da, observed mass MALDI-
TOF-MS) = 1759.531 Da

Co7HssN7Og* [V886(tBP*)] exact mass = 1478.6694 Da, observed mass (MALDI-TOF-MS) =
1478.669 Da.
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H NMR and '3C NMR spectra of VV886(tBP*)(TFSI")

V886(Py+)(TFSI-) 1H NMR 400MHz
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Figure S10. *H NMR spectrum of VV886(tBP*)(TFSI") from dmso-d6
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V886 13C NMR
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Figure S11. *3C NMR spectrum of V886(tBP*)(TFSI") from dmso-d6
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Figure S12. MALDI-TOF-MS spectrum in wide m/z range of VV886(tBP*)(TFSI").
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1,1'-[1,2-phenylenebis(methylene{3,6-bis[bis(4-methoxyphenyl)amino]-9H-carbazole-9,4-
diyl})]bis(4-tert-butylpyridin-1-ium) bis[bis(trifluoromethanesulfonyl)azanide] ; V886(tBP*)2(TFSI-

)2

Rt =0.05; THF:n-hexane (3:2 v:v)

IH NMR (400 MHz, DMSO-ds) 3 9.05 (d, J = 6.4 Hz, 4H), 7.95 — 7.89 (m, 6H), 7.61 (d, J = 9.0 Hz,
2H), 7.42 (d, J = 8.8 Hz, 2H), 7.17 — 7.05 (m, 4H), 6.83 — 6.69 (m, 32H), 6.46 (dd, J = 5.6, 3.4 Hz,
2H), 6.25 (d, J = 2.1 Hz, 2H), 6.09 (s, 4H), 3.73 — 3.66 (M, 24H), 1.22 (s, 18H).

13C NMR (101 MHz, DMSO) & 154.90, 154.70, 146.17, 140.73, 140.11, 125.04, 124.59, 123.49,
114.73, 55.28, 55.07, 36.39, 29.20.

Anal. calcd for C110H100F12N10016S4: C, 60.77; H, 4.64; N, 6.44; found: C, 60.56; H, 4.61; N, 6.48.

C108H100FsNgO12S2™ [V886(tBP™)2(TFSIY)] exact mass = 1892.6837 Da, observed mass (MALDI-
TOF-MS) = 1892.588 Da.
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'H NMR and *C NMR spectra of VV886(tBP*)2(TFSI")2

V886(Py+)2(TFSI-)2 1H NMR 400 MHz
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Figure S14. *H NMR spectrum of V886(tBP*)2(TFSI"). from dmso-d6
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V886(Py+)2(TFSI-)2 13C NMR
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Figure S15. 3C NMR spectrum of VV886(tBP*)2(TFSI"). from dmso-d6
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Figure S16. MALDI-TOF-MS spectrum in wide m/z range of VV886(tBP*)2(TFSI)2.

lonization Potential Measurements

The solid state ionization potential (Ip) of the layers of the synthesized compounds was measured by
the electron photoemission in air method®*%. The samples for the ionization potential measurement
were prepared by dissolving materials in CHCIs and were coated on Al plates pre-coated with
~0.5 um thick methylmethacrylate and methacrylic acid copolymer adhesive layer. The thickness of
the transporting material layer was 0.5-1 um. Usually photoemission experiments are carried out in
vacuum and high vacuum is one of the main requirements for these measurements. If vacuum is not
high enough the sample surface oxidation and gas adsorption are influencing the measurement results.
In our case, however, the organic materials investigated are stable enough to oxygen and the
measurements may be carried out in the air. The samples were illuminated with monochromatic light
from the quartz monochromator with deuterium lamp. The power of the incident light beam was (2-
5)x10 W. The negative voltage of —300 V was supplied to the sample substrate. The counter-
electrode with the 4.5x15 mm? slit for illumination was placed at 8 mm distance from the sample
surface. The counter-electrode was connected to the input of the BK2-16 type electrometer, working
in the open input regime, for the photocurrent measurement. The 10*° — 1012 A strong photocurrent
was flowing in the circuit under illumination. The photocurrent I is strongly dependent on the incident
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light photon energy hv. The 19°=f{(hv) dependence was plotted. Usually the dependence of the
photocurrent on incident light quanta energy is well described by linear relationship between 1°° and
hv near the threshold. The linear part of this dependence was extrapolated to the hv axis and Ip value
was determined as the photon energy at the interception point.
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Figure S17. Photoemission in air spectra of the V886(tBP*)(TFSI") (top), and VV886(tBP*)2(TFSI"). (bottom).

Cyclic voltammetry measurements

Electrochemical studies were carried out by a three-electrode assembly cell and
potentiostat/galvanostat from Bio-Logic SAS. Measurements were carried out with a glassy carbon
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electrode in acetonitrile solutions containing 0.1 M tetrabutylammonium hexafluorophosphate as
electrolyte and Pt wire as the reference electrode, and a Pt wire counter electrode at a scan rate
50 mVxs 1, Each measurement was calibrated with ferrocene (Fc).

—=— V886
—e— V886(tBP*)(TFSI)
V886(tBP"),(TFSI),

: : .
0.5 0.0 0.5
E, V vs Fc/Fc'

Figure S18. Cyclic voltammograms of VV886-based compounds.

Table S1. Optical and electrochemical data of the V886, V886(tBP*)(TFSI"), and VV886(tBP*)2(TFSI")..

. Eoxt, V | Eox2, VVS | Eoxs, V VS Eromo Eg ELumo Ip EA
Material
vs Fc Fc Fc (eVv)? (eV)P (eV)© eVv) | (ev)d
V886 0.0854 0.2717 - -5.32 2.72 -2.60 5.04%2 2.32
V886(tBP*)(TFSIY) 0.1077 0.2445 0.5270 -5.34 1.70 -3.64 5.4 3.7
V886(tBP*)2(TFSI)2 0.2924 0.5989 - -5.53 1.78 -3.75 5.7 3.92

aConversion factors: ferrocene in THF vs SCE 0.56%, SCE vs SHE: 0.244, SHE vs. vacuum: 4.43'. "Optical
band gap (E¢°) was estimated from the edge of electronic absorption spectra from solution. (LUMO energy (ELumo) Was
calculated using equation Eiumo = Eromo + E¢%'. 9Electron affinity (EA) calculated from the equation EA = I, — E¢°.

Conductivity

For the estimation of materials bulk conductivity charge carriers extraction by linearly increasing
voltage (CELIV) technique was used. Films were formed on pre-cleaned FTO substrate by drop-
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casting 20 mg/ml solutions in acetonitrile. Aluminum electrodes were evaporated on top of the
organic film and the measurements were conducted.

Table S2. Conductivities of the V886, VV886(tBP*)(TFSI"), and V886(tBP*)2(TFSI")2.

Material Conductivity, Sxcm™
V886, doped with 10mol % FK209’ 4.2x107°
V886(tBP*)(TFSI") 1.0x107°
V886(tBP*)2(TFSI")2 0.5x107°
UV/vis spectroscopy

UV/vis spectra were recorded on Shimadzu UV-3600 spectrometer from the 10 M solutions in THF.
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Figure S19. UV/vis spectra of the V886, V886(tBP*)(TFSI"), and V886(tBP*)2(TFSI")..
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Perovskite solar cell fabrication and characterization

Fluorine doped tin oxide (FTO) glass substrates (Nippon sheet glass) were sequentially cleaned with
the detergent solution, acetone, and ethanol. Then, a compact TiO2 layer was coated on the cleaned
FTO substrate heated at 450 °C by spray pyrolysis deposition. A precursor solution was obtained by
diluting titanium diisopropoxide (Sigma-Aldrich) in ethanol (0.6 mL; 10 mL). Mesoporous TiO> films
were prepared using a diluted TiO- paste (Dyesol 30 NR-D) solution. Films were spin coated at 2000
rpm for 10 s and sintered on a hot plate at 500 °C for 30 min. After cooling to room temperature,
films were treated with 0.1 M lithium bistrifluoromethanesulfonimidate solution (Li-TFSI, Aldrich)
in acetonitrile by spin coating at 3000 rpm for 10 s and finally baked again at 500 °C for 30 min. The
lead excess (FAPDI3)o.ss(MAPDBr3)0.15 precursor solution was prepared by mixing FAI (1.1 M), Pbl;
(1.15 M), MABr (0.2 M), and PbBr, (0.2 M) in a mixed solvent of DMF:DMSO = 4:1 (volume ratio).
Another solution of CsPbls was also prepared as 1.15 M in DMF:DMSO (same volume ratio). For
triple cations mixed perovskite solution, (FAPDbI3)o.ss(MAPbBI3)o.15s and CsPblz solutions were mixed
as 10 vol% ratio. The perovskite precursor solution was spin coated at 2000 rpm for 10 s, followed
by 6000 rpm for 30 s. Trifluorotoluene (110 pL) was dropped on the spinning substrate at the 20 s in
the second step. The films were annealed at 100 °C for 90 min in the glove box. The hole-transporting
material was applied from a 40 x 102 M solution in chlorobenzene. Tert-butylpyridine (tBP), tris(2-
(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(Ill) (FK209) and tris(bis(trifluoromethylsulfon-
yl)imide) (Li-TFSI) were added as additives. Equimolar amounts of additives were added: 330 mol%
tBP, 50 mol% Li-TFSI from a 1.8 M stock solution in acetonitrile and 3 mol% FK209 from a 0.25 M
stock solution in acetonitrile. Finally, 70 nm of Au was deposited by thermal evaporation as the back
electrode.

The solar cell measurement was done using commercial solar simulators (Oriel VeraSol-2, AAA class
LED). The light intensity was calibrated with a Si reference cell equipped with an IR-cutoff filter
(KG3, Newport) and it was recorded before each measurement. Current—voltage characteristics of the
cells were obtained by applying an external voltage bias while measuring the current response with a
digital source meter (Keithley 2400/2604). The voltage scan rate was 20 mV s and no device
preconditioning such as light soaking or forward voltage bias was applied before starting the
measurement. The cells were masked with the active area of 0.16 cm? to fix the active area and reduce
the influence of the scattered light.

More detailed description of the perovskite solar cells characteristics can be found in our recent
publication.*?]

Perovskite solar cell aging

PSC aging was performed by keeping device under thermal stress (at 80°C in the oven) for 340h.
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Figure S20. J-V characteristics of PSC with V886 as a HTM before and after aging at 80°C for 340 h.

S29



Intens. [a.u.]

jay
(=]
-h

w
o
"

2.5

2.0

1.5

1.0

0.5

0.0

MS analysis of the aged device

— -873543

-1224 537

-1344 800

1374 582

-1400.638

1444632

-1562.785

— -1486.676

£

800

800

1000

1200

1400 1800

1800

2000

2200

2400

2800
miz

Figure S21. MALDI-TOF-MS spectrum in wide m/z range of HTM layer, washed from the VV886-based PSC, aged at

80 °C for 340 h.
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Figure S22. MALDI-TOF-MS spectrum in narrow m/z range of HTM layer, washed from the \V886-based PSC, aged at
80 °C for 340 h.
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Figure S23. Full MS and MS/MS spectra of 1478.856 m/z signal (\V886(tBP™) in narrow and wide m/z ranges,
respectively. MS/MS spectrum includes tentative fragmentation map and assigned fragments.
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