Electronic Supplementary Information

Piezoactive Amino Acid Derivatives Containing Fragments of Planar-Chiral *ortho*-Carboranes

Dmitry A. Gruzdev,^{*, a, b} Alla S. Nuraeva,^c Pavel A. Slepukhin,^{a,b} Galina L. Levit,^{a, b} Pavel S. Zelenovskiy,^c Vladimir Ya. Shur,^c and Victor P. Krasnov^{a, b}

^a Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 22/20 S. Kovalevskoy/Akademicheskaya St., Ekaterinburg, 620990 Russia

^b Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002 Russia

^c School of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Ave., Ekaterinburg, 620000 Russia

* Corresponding author: <u>gruzdev-da@ios.uran.ru</u> (Dmitry A. Gruzdev)

Contents

1	Chemistry	S2
1.1.	General	S2
1.2.	Synthetic procedures and compounds characterization	S 3
2	Copies of NMR spectra	S10
3	Crystallographic Data and Optical Microscopy	S22
4	Piezoelectric measurements	S28
5	References	S29

1. Chemistry

1.1. General

tert-Butyl (S)-valinate hydroacetate, S1 tert-butyl (S)-tert-leucinate, S2 tert-butyl (S)-leucinate, S3 acid^{S4} (3-acetamido-1,2-dicarba-closo-dodecaboran-1-yl)acetic and (3-formamido-1,2dicarba-*closo*-dodecaboran-1yl)acetic acid^{S4} were obtained according to known procedures. tert-Butyl (S)-valinate (yield 79%) was isolated from its salt with acetic acid on treatment with a CHCI₃–5% aqueous Na₂CO₃ mixture. Other reagents were commercially available. Solvents were purified according to traditional methods^{S5} and used freshly distilled. Melting points were obtained on a SMP3 apparatus (Barloworld Scientific, UK). Optical rotations were measured on a Perkin Elmer 341 polarimeter. The ¹H and ¹³C NMR spectra were recorded on Bruker Avance 500 (500, and 125 MHz, respectively) spectrometer at 298 K using DMSO-d₆ as a solvent and tetramethylsilane as an internal reference. Microanalyses were performed using a Perkin Elmer 2400 II automatic analyzer. Analytical TLC was performed using Sorbfil plates (Imid, Russia). Flash column chromatography was performed using Silica gel 60 (230-400 mesh) (Alfa Aesar, UK). Analytical chiral HPLC of compounds 3a-f was performed on a Knauer Smartline-1100 instrument using a Chiralcel OD-H column (250×4.6 mm, 5 µm), detection at 210 nm, 1 mL/min flow rate. Preparative HPLC was performed on a Shimadzu LC-20 Prominence instrument using a Chiralcel OD-H column (250×20 mm, 5 µm), detection at 210 nm, 10 mL/min flow rate. The high-resolution mass spectra were obtained on a Bruker maXis Impact HD mass spectrometer, electrospray ionization with direct sample inlet (4 L/min flow rate).

1.2. Synthetic Procedures and Compounds Characterization

Compounds 3a-d. General Procedure. TBTU (0.43 g, 1.35 mmol) was added to a solution of compound **1a** (or **1b**) (1.35 mmol), compound **2a** (**2b-d**) (1.35 mmol), and TEA (0.56 mL, 4.05 mmol) in dichloromethane (18 mL) under stirring. The reaction mixture was stirred for 70 h at room temperature, then washed consequently with 10% aqueous citric acid (3×20 mL), saturated NaCl (20 mL), 5% aqueous NaHCO₃ (3×20 mL), and water (2×20 mL). Organic layer was dried (MgSO₄) and evaporated to dryness under reduced pressure The residue was recrystallized, or subjected to flash column chromatography or preparative HPLC to afford individual (S, S_P)- and (S, R_P)-amides **3a-d**.

 denotes carbon atom and CH group, other vertices are boron atoms and BH groups (*S*,*S*_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba*closo*-dodecaboran-1-yl)acetyl-valinate [(*S*,*S*_P)-3a]. Yield 0.076 g (13.6%) after two crystallizations from hexane–acetone 1:1. Colorless needles, mp 228-229 °C. *De* > 98%. HPLC (hexane–*i*PrOH 10:1): T 6.51 min. $[\alpha]_{D}^{20}$ +22.5 (*c* 0.26, CH₂Cl₂). ¹H

NMR: δ 0.879 (d, J = 6.8 Hz, 3H, *i*Pr), 0.885 (d, J = 6.8 Hz, 3H, *i*Pr), 1.42 (s, 9 H, O*t*Bu), 1.98 (s, 3H, Ac), 1.97–2.03 (m, 1H, *i*Pr), 2.96 (d, J = 14.7 Hz, 1H, H-2'B), 3.11 (d, J = 14.7 Hz, 1H, H-2'A), 1.4–3.1 (br. s, 9H, 9×BH), 3.99 (dd, J = 8.3, 6.2 Hz, 1H, H-2), 5.20 (s, 1H, CH-carborane), 8.39 (s, 1H, N<u>H</u>Ac), 8.40 (d, J = 8.3 Hz, 1H, NH-Val). ¹³C NMR: δ 18.05, 18.86, 24.43, 27.58 (3C), 29.85, 38.58, 58.18, 59.85, 71.41, 80.82, 166.03, 170.18, 173.86. HRMS (ESI) *m*/*z* calcd. for C₁₅H₃₅¹⁰B₂¹¹B₈N₂O₄ [M + H]⁺ 415.3595; found 415.3605. Anal. Calcd. for C₁₅H₃₄B₁₀N₂O₄: C 43.46, H 8.27, N 6.76. Found: C 43.52, H 8.40, N 6.67.

(S, R_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-valinate [(S, R_P)-3a]. Yield 0.127 g (22.7%) after flash column chromatography on silica gel (eluent hexane–acetone from 9:1 to 75:25). Colorless needles, mp 220-222 °C. *De* > 98%. HPLC

(hexane–*i*PrOH 10:1): τ 7.94 min. [α]_D²⁰ –2.1 (*c* 0.64, CH₂Cl₂). ¹H NMR: δ 0.88 (d, *J* = 6.8 Hz, 6H, *i*Pr), 1.41 (s, 9H, O*t*Bu), 1.98 (s, 3H, Ac), 1.96–2.06 (m, 1H, *i*Pr), 2.94 (d, *J* = 14.8 Hz, 1H, H-2'B), 3.14 (d, *J* = 14.8 Hz, 1H, H-2'A), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz, 1H, H-2'A), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz, 1H, H-2'A), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz, 1H, H-2'A), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz, 1H, H-2'A), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz, 1H, H-2'A), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz, 1H, 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 4.03 (dd, *J* = 8.4, 6.0 Hz), 1.5–2.9 (br. s, 9H, 9×BH), 1.

1H, H-2), 5.22 (s, 1H, CH-carborane), 8.36 (d, J = 8.4 Hz, 1H, NH-Val), 8.39 (s, 1H, N<u>H</u>Ac). ¹³C NMR: δ 17.94, 18.87, 24.43, 27.59 (3C), 29.96, 38.64, 57.97, 59.74, 71.36, 80.87, 166.00, 170.16, 173.93. Anal. Calcd. for C₁₅H₃₄B₁₀N₂O₄: C 43.46, H 8.27, N 6.76, B 26.08. Found: C 43.44, H 8.14, N 6.78, B 26.04.

(S,S_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-phenylalaninate [(S,S_P)-3b]. Yield 0.076 g (28.2%) after preparative HPLC (hexane*i*PrOH 10:1, T 12-18 min). Colorless solid, mp 166–168 °C. $[\alpha]_D^{20}$ +32.9 (*c* 0.42, CH₂Cl₂). *De* > 99%. HPLC

(hexane–*i*PrOH 10:1): τ 13.85 min. ¹H NMR: δ 1.33 (s, 9H, O*t*Bu), 1.95 (s, 3H, Ac), 1.4–2.7 (br. s, 9H, 9×BH), 2.84 (d, *J* = 14.8 Hz, 1H, H-2'B), 2.86 (dd, *J* = 13.8, 8.8 Hz, 1H, H-3B), 2.96 (dd, *J* = 13.8, 6.5 Hz, 1H, H-3A), 3.01 (d, *J* = 14.8 Hz, 1H, H-2'A), 4.32–4.37 (m, 1H, H-2), 5.13 (s, 1H, CH-carborane), 7.20–7.23 (m, 3H, Ph), 7.27–7.30 (m, 2H, Ph), 8.35 (s, 1H, N<u>H</u>Ac), 8.67 (d, *J* = 7.9 Hz, 1H, NH-Phe). ¹³C NMR: δ 24.40, 27.44 (3C), 36.86, 38.52, 54.28, 59.60, 71.18, 80.91, 126.57, 128.19 (2C), 129.11 (2C), 136.79, 165.66, 170.12, 173.81. Anal. Calcd. for C₁₉H₃₄B₁₀N₂O₄: C 49.33, H 7.41, N 6.06, B 23.37. Found: C 49.03, H 7.70, N 6.00, B 23.52.

(S, R_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-phenylalaninate [(S, R_P)-3b]. Yield 0.076 g (25.1%) after preparative HPLC (hexane*i*PrOH 10:1, T 21-30 min). Colorless solid, mp 121–122 °C. [α]_D²⁰ +10.4 (*c* 0.58, CH₂Cl₂). *De* > 97.4%. HPLC (hexane-

*i*PrOH 10:1): τ 22.08 min. ¹H NMR: δ 1.34 (s, 9H, O*t*Bu), 1.97 (s, 3H, Ac), 1.5–2.5 (br. s, 9H, 9×BH), 2.85 (dd, *J* = 13.6, 9.3 Hz, 1H, H-3B), 2.87 (d, *J* = 14.8 Hz, 1H, H-2'B), 2.98 (dd, *J* = 13.6, 6.3 Hz, 1H, H-3A), 3.00 (d, *J* = 14.8 Hz, 1H, H-2'A), 4.36–4.41 (m, 1H, H-2), 5.12 (s, 1H, CH-carborane), 7.21–7.30 (m, 5H, Ph), 8.37 (s, 1H, N<u>H</u>Ac), 8.63 (d, *J* = 7.9 Hz, 1H, NH-Phe). ¹³C NMR: δ 24.36, 27.45 (3C), 36.95, 38.54, 54.02, 59.50, 71.72, 80.97, 126.53, 128.15 (2C), 129.11 (2C), 136.73, 165.59, 170.04, 173.81. HRMS (ESI) *m*/*z* calcd. for C₁₉H₃₅¹⁰B₂¹¹B₈N₂O₄ [M + H]⁺ 463.3595; found 463.3600.

 (S, S_P) -tert-Butyl N-(3-acetamido-1,2-dicarba-closododecaboran-1-yl)acetyl-leucinate [(S, S_P) -3c]. Yield 0.089 g (32.5%) after preparative HPLC (hexane–*i*PrOH 11:1, τ 10-16 min) followed by crystallization from hexane–CH₂Cl₂ (5:2). Colorless needles, mp 210 °C (hexane–CH₂Cl₂). [α]_D²⁰ +7.1 (*c* 0.27, C₆H₆). *De* > 99%. HPLC (hexane–*i*PrOH 10:1): τ 15.50 min. ¹H NMR: δ 0.84 (d, *J* = 6.5 Hz, 3H, *i*Pr), 0.90 (d, *J* = 6.6 Hz, 3H, *i*Pr), 1.40 (s, 9H, *t*Bu), 1.44–1.49 (m, 2H, 2×H-3), 1.55–1.67 (m, 1H, *i*Pr), 1.97 (s, 3H, Ac), 1.4–2.8 (br. s, 9H, 9×BH), 2.90 (d, *J* = 14.8 Hz, 1H, H-2'B), 3.03 (d, *J* = 14.8 Hz, 1H, H-2'A), 4.06–4.11 (m, 1H, H-2), 5.19 (s, 1H, CH-carborane), 8.38 (s, 1H, N<u>H</u>Ac), 8.54 (d, *J* = 7.6 Hz, 1H, NH-Leu). ¹³C NMR: δ 21.35, 22.59, 24.17 (2C), 24.42, 27.53 (3C), 38.62, 51.29, 59.72, 71.29, 80.69, 165.76, 171.19, 173.84. Anal. Calcd. for C₁₆H₃₆B₁₀N₂O₄: C 44.84, H 8.47, N 6.54. Found: C 44.88, H 8.68, N 6.43.

(S,R_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-leucinate [(S,R_P)-3c]. Yield 0.075 g (27.5%) after flash column chromatography on silica gel (eluent hexane–acetone 9:1) followed by preparative HPLC (hexane–*i*PrOH 11:1, T 18-24 min).

Colorless solid, mp 178–179 °C. $[\alpha]_{D}^{20}$ –24.9 (*c* 0.56, C₆H₆). *De* > 99%. HPLC (hexane– /PrOH 10:1): T 15.50 min. ¹H NMR: δ 0.85 (d, *J* = 6.5 Hz, 3H, *i*Pr), 0.91 (d, *J* = 6.6 Hz, 3H, *i*Pr), 1.40 (s, 9H, *t*Bu), 1.45–1.49 (m, 2H, 2×H-3), 1.58–1.68 (m, 1H, *i*Pr), 1.98 (s, 3H, Ac), 1.5–2.7 (br. s, 9H, 9×BH), 2.89 (d, *J* = 14.7 Hz, 1H, H-2'B), 3.04 (d, *J* = 14.7 Hz, 1H, H-2'A), 4.08–4.15 (m, 1H, H-2), 5.19 (s, 1H, CH-carborane), 8.39 (s, 1H, N<u>H</u>Ac), 8.51 (d, *J* = 7.6 Hz, 1H, NH-Leu). ¹³C NMR: δ 21.21, 22.63, 24.20 (2C), 24.40, 27.53 (3C), 38.75, 51.14, 59.79, 71.24, 80.72, 165.70, 171.17, 173.89. HRMS (ESI) *m*/*z* calcd. for C₁₆H₃₇¹⁰B₂¹¹B₈N₂O₄ [M + H]⁺ 429.3751; found 429.3754.

 (S,S_P) -tert-ButylN-(3-acetamido-1,2-dicarba-closo-
dodecaboran-1-yl)acetyl-tert-leucinate $[(S,S_P)$ -3d].Yield 0.024 g (8.7%) after flash column chromatography
on silica gel (eluent benzene–EtOAc 8:2).Colorless

crystals, mp 222–225 °C (CH₂Cl₂–MeOH). $[\alpha]_D^{20}$ +10.2 (*c* 0.56, CH₂Cl₂). *De* > 99%. HPLC (hexane–*i*PrOH–MeOH 20:0.8:0.2): T 15.45 min. ¹H NMR: δ 0.94 (s, 9H, *t*Bu), 1.42 (s, 9H, O*t*Bu), 1.6–2.7 (br. s, 9H, 9×BH), 1.98 (s, 3H, Ac), 2.97 (d, *J* = 14.7 Hz, 1H, H-2'B), 3.19 (d, *J* = 14.7 Hz, 1H, H-2'A), 3.97 (d, *J* = 8.7 Hz, 1H, H-2), 5.18 (s, 1H, CH-carborane), 8.28 (d, *J* = 8.7 Hz, 1H, NH-Tle), 8.40 (s, 1H, N<u>H</u>Ac). ¹³C NMR: δ 24.39, 26.50 (3C), 27.57 (3C), 33.39,

38.48, 59.86, 61.21, 71.46, 80.80, 166.05, 169.54, 173.83. HRMS (ESI) m/z calcd. for $C_{16}H_{37}^{10}B_2^{11}B_8N_2O_4$ [M + H]⁺ 429.3751; found 429.3757.

(*S*,*R*_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-*tert*-leucinate [(*S*,*R*_P)-3d]. Yield 0.040 g (14.6%) after flash column chromatography Me on silica gel (eluent benzene–EtOAc) followed by

preparative HPLC (hexane–*i*PrOH–MeOH 20:0.8:0.2, \pm 26-36 min). Colorless solid, mp 228– 229 °C (hexane–*i*PrOH). [α]_D²⁰ –2.6 (*c* 0.5, CH₂Cl₂). *De* > 99%. HPLC (hexane–*i*PrOH–MeOH 20:0.8:0.2): \pm 26.50 min. ¹H NMR: δ 0.95 (s, 9H, *t*Bu), 1.42 (s, 9H, O*t*Bu), 1.6–2.7 (br. s, 9H, 9×BH), 1.98 (s, 3H, Ac), 3.00 (d, *J* = 14.7 Hz, 1H, H-2'B), 3.16 (d, *J* = 14.7 Hz, 1H, H-2'A), 4.00 (d, *J* = 8.8 Hz, 1H, H-2), 5.22 (s, 1H, CH-carborane), 8.24 (d, *J* = 8.8 Hz, 1H, NH-Tle), 8.41 (s, 1H, N<u>H</u>Ac). ¹³C NMR: δ 24.42, 26.54 (3C), 27.63 (3C), 33.53, 38.68, 59.86, 61.06, 71.42, 80.89, 165.95, 169.56, 173.97. Anal. Calcd. for C₁₆H₃₆B₁₀N₂O₄: C 44.84, H 8.47, N 6.54. Found: C 44.71, H 8.64, N 6.69.

Compounds 3e,f. General Procedure. Ethyl chloroformate (0.061 g, 0.64 mmol) was added to a solution of compound **1a** (or **1b**) (0.64 mmol) and *N*-methylmorpholine (0.070 mL, 0.64 mmol) in THF (2 mL) under stirring at -10 °C. The reaction mixture was stirred at -10 °C for 20 min; then compound **2e** (or **2f**) (0.64 mmol) and a solution of DIPEA (0.223 mL, 1.28 mmol) in THF (4 mL) was added. The reaction mixture was stirred at -10 °C for 30 min and at +20 °C for a day, and evaporated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent hexane–acetone from 9:1 to 7:3 for compound **3e**, or benzene–ethyl acetate from 9:1 to 75:25 for compound **3f**). The resulting mixture of diastereomeric amides was subjected to preparative HPLC to afford individual (*S*,*S*_P)- and (*S*,*R*_P)-amides **3e,fd**.

(S,S_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-prolinate [(S,S_P)-3e]. Yield 0.039 g (14.8%) after preparative HPLC (hexane– *i*PrOH–MeOH 20:0.8:0.2, T 20-30 min). Colorless solid, mp 187–188 °C. $[\alpha]_{D}^{20}$ –34.7 (*c* 0.66, MeOH). *De* > 99%.

HPLC (hexane-*i*PrOH-MeOH 20:0.8:0.2): τ 18.15 min. ¹H NMR (rotamers **A** and **B** are observable, **A** / **B** 8 : 2): δ 1.39 (s, 7.2H, *t*Bu (**A**)), 1.42 (s, 1.8H, *t*Bu (**B**)), 1.78–1.84 (m, 1H,

H-3B), 1.88–1.93 (m, 2H, 2×H-4), 1.96 (s, 2.4H, Ac (*A*)); 1.97 (s, 0.6H, Ac (*B*)); 2.02–2.16 (m, 1H, H-3A), 1.4–2.7 (br. s, 9H, 9×BH); 2.84 (d, *J* = 15.9 Hz, 0.2H, H-2'B (*B*)); 3.08 (d, *J* = 15.6 Hz, 0.8H, H-2'B (*A*)); 3.20 (d, *J* = 15.9 Hz, 0.2H, H-2'A (*B*)); 3.29 (d, *J* = 15.6 Hz, 0.8H, H-2'A (*A*)); 4.10 (dd, *J* = 8.7, 4.0 Hz, 0.8H, H-2 (*A*)); 4.50–4.53 (m, 0.2H, H-2 (*B*)); 5.33 (s, 0.8H, CH-carborane (*A*)); 5.43 (s, 0.2H, CH-carborane (*B*)); 8.44 (s, 0.8H, N<u>H</u>Ac (*A*)); 8.49 (s, 0.2H, N<u>H</u>Ac (*B*)). ¹³C NMR (rotamers *A* and *B* are observable, *A* / *B* 8 : 2): δ 21.88 (*B*), 24.18 (*A*), 24.25 (*B*), 24.28 (*A*), 27.43 (3C) (*B*), 27.48 (3C) (*A*), 28.76 (*A*), 30.51 (*B*), 36.29 (*B*), 36.51 (*A*), 46.10 (*B*), 47.35 (*A*), 59.33 (*B*), 59.37 (*A*), 59.48 (*A*), 59.74 (*B*), 71.11 (*A* and *B*), 80.48 (*A*), 81.84 (*B*), 164.49 (*A*), 164.73 (*B*), 170.52 (*A*), 170.61 (*B*), 173.60 (*B*), 173.64 (*A*). Anal. Calcd. for C₁₅H₃₂B₁₀N₂O₄: C 43.67, H 7.82, N 6.89. Found: C 43.79, H 7.70, N 6.49.

(*S*,*R*_P)-*tert*-Butyl *N*-(3-acetamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-prolinate [(*S*,*R*_P)-3e]. Yield 0.023 g (8.7%) after preparative HPLC (hexane-*i*PrOH-MeOH 20:0.8:0.2, T 32-46 min). Colorless solid, mp 167– 169 °C. [α]_D²⁰ –46.2 (*c* 0.67, CH₂Cl₂). *De* > 99%. HPLC

(hexane–*i*PrOH–MeOH 20:0.8:0.2): T 26-28 min (broad peak). ¹H NMR (rotamers *A* and *B* are observable, *A* / *B* 8 : 2): δ 1.38 (s, 7.2H, *t*Bu (*A*)), 1.43 (s, 1.8H, *t*Bu (*B*)), 1.77–1.85 (m, 1H, H-3B), 1.87–1.93 (m, 2H, 2×H-4), 1.94 (s, 0.6H, Ac (*B*)), 1.98 (s, 2.4H, Ac (*A*)), 2.11–2.18 (m, 1H, H-3A), 1.7–2.8 (br. s, 9H, 9×BH), 2.92 (d, *J* = 15.8 Hz, 0.2H, H-2'B (*B*)), 3.08 (d, *J* = 15.6 Hz, 0.8H, H-2'B (*A*)), 3.11 (d, *J* = 15.8 Hz, 0.2H, H-2'A (*B*)), 3.28 (d, *J* = 15.6 Hz, 0.8H, H-2'A (*A*)), 4.14 (dd, *J* = 8.7, 4.0 Hz, 0.8H, H-2 (*A*)), 4.59–4.62 (m, 0.2H, H-2 (*B*)), 5.35 (s, 0.8H, CH-carborane (*A*)), 5.59 (s, 0.2H, CH-carborane (*B*)), 8.43 (s, 1H, N<u>H</u>Ac). ¹³C NMR (rotamers *A* and *B* are observable, *A* / *B* 8 : 2): δ 21.86 (*B*), 24.16 (*A*), 24.24 (*B*), 24.31 (*A*), 27.45 (3C) (*B*), 27.50 (3C) (*A*), 28.76 (*A*), 30.65 (*B*), 36.50 (*B*), 36.70 (*A*), 46.13 (*B*), 47.39 (*A*), 59.33 (*A*), 59.42 (*B*), 59.69 (*B*), 60.00 (*A*), 71.03 (*B*), 71.13 (*A*), 80.43 (*A*), 81.79 (*B*), 164.49 (*A*), 164.82 (*B*), 170.55 (*A*), 170.69 (*B*), 173.52 (*B*), 173.71 (*A*). Anal. Calcd. for C₁₅H₃₂B₁₀N₂O₄: C 43.67, H 7.82, N 6.89. Found: C 43.57, H 7.86, N 6.74.

(*S*,*S*_P)-*tert*-Butyl *N*-(3-formamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-phenylalaninate [(*S*,*S*_P)-3f]. Yield 0.091 g (31.6%) after preparative HPLC (hexane*i*PrOH 8:1, T 34-42 min). Colorless solid, mp 146–149 °C. [α]_D²⁰ +30.0 (*c* 0.45, CH₂Cl₂). *De* > 98%. HPLC (hexane*i*PrOH 10:1): T 24.92 min. ¹H NMR (rotamers *A* and *B* are observable, *A* / *B* 1 : 1): δ 1.34 (s, 9H, *t*Bu), 1.4–2.6 (br. s, 9H, 9×BH), 2.83–2.89 (m, 1H, H-3B), 2.87 (d, *J* = 14.7 Hz,

0.5H, H-2'B (**A**)), 2.94 (d, J = 14.8 Hz, 0.5H, H-2'B (**B**)), 2.95–3.00 (m, 1H, H-3A), 3.05 (d, J = 14.8 Hz, 0.5H, H-2'A (**B**)), 3.12 (d, J = 14.7 Hz, 0.5H, H-2'A (**A**)), 4.32–4.40 (m, 1H, H-2), 4.97 (s, 0.5H, CH-carborane (**A**)), 5.13 (s, 0.5H, CH-carborane (**B**)), 8.24 (d, 0.5H, J = 1.8 Hz, N<u>H</u>CHO (**A**)), 8.32–8.37 (m, 1H, N<u>H</u>C<u>H</u>O (**B**)), 8.55 (br. s, 0.5H, NHC<u>H</u>O (**A**)), 8.69 (d, 0.5H, J = 7.7 Hz, NH-Phe (**A**)), 8.76 (d, 0.5H, J = 7.8 Hz, NH-Phe (**B**)). ¹³C NMR (rotamers **A** and **B** are observable, **A** / **B** 1 : 1): δ 27.45 (3C), 36.82 (**A** and **B**), 38.48 (**A** and **B**), 54.26 (**A** and **B**), 59.90 (**A**), 60.78 (**B**), 71.02 (**A**), 71.25 (**B**), 80.95 (**A**), 80.99 (**B**), 126.57 (**A** and **B**), 128.19 (2C), 129.11 (2C), 136.80 (**A** and **B**), 165.28 (**A**), 165.58 (**A**), 165.59 (**B**), 166.60 (**B**), 170.04 (**A**), 170.10 (**B**). HRMS (ESI) *m*/*z* calcd. for C₁₈H₃₃¹⁰B₂¹¹B₈N₂O₄ [M + H]⁺ 449.3438; found

449.3443.

(*S*,*R*_P)-*tert*-Butyl *N*-(3-formamido-1,2-dicarba-*closo*dodecaboran-1-yl)acetyl-phenylalaninate [(*S*,*R*_P)-3f]. Yield 0.080 g (27.7%) after preparative HPLC (hexane– *i*PrOH 8:1, τ 24-30 min). Colorless solid, mp 127–130 °C. [α]_D²⁰ +21.8 (*c* 0.42, CH₂Cl₂). *De* > 98%. HPLC (hexane– *i*PrOH 10:1): τ 17.47 min. ¹H NMR (rotamers *A* and *B* are observable, *A* / *B* 1 : 1): δ 1.34 (s, 9 H, *t*Bu), 1.5–2.6 (br. s, 9 H, 9×BH); 2.83–3.02 (m, 3 H, 2×H-3 and H-2'B), 3.02 (d, 0.5

H, J = 14.7 Hz, H-2'A (*A*)), 3.10 (d, 0.5 H, J = 14.7 Hz, H-2'A (*B*)), 4.36–4.42 (m, 1 H, H-2); 4.93 (s, 0.5 H, CH-carborane (*A*)), 5.12 (s, 0.5 H, CH-carborane (*B*)), 8.26 (br. s, 0.5 H, N<u>H</u>CHO (*A*)), 8.32–8.37 (m, 1 H, N<u>H</u>C<u>H</u>O (*B*)), 8.56 (br. s, 0.5 H, NHC<u>H</u>O (*A*)), 8.66 (d, 0.5 H, J = 7.8 Hz, NH-Phe (*A*)), 8.74 (d, 0.5 H, J = 7.7 Hz, NH-Phe (*B*)). ¹³C NMR (rotamers *A* and *B* are observable, *A* / *B* 1 : 1): δ 27.47 (3C), 36.85 (*A*), 36.92 (*B*), 38.52 (*A* and *B*), 54.02 (*A*), 54.07 (*B*), 59.86 (*A*), 60.87 (*B*), 71.00 (*A*), 71.21 (*B*), 81.00 (*A*), 81.03 (*B*), 126.57 (*A* and **B**), 128.19 (2C), 129.14 (2C), 136.75, 165.30 (**A**), 165.53, 166.63 (**B**), 170.06. HRMS (ESI) m/z calcd. for $C_{18}H_{33}{}^{10}B_2{}^{11}B_8N_2O_4$ [M + H]⁺ 449.3438; found 449.3444.

Figure S1. ¹H NMR spectrum of compound (S,S_P)-3a (DMSO-d₆, 25 °C, 500 MHz)

S10

Figure S3. ¹H NMR spectrum of compound (S, R_P)-3a (DMSO-d₆, 25 °C, 500 MHz)

S11

Figure S5. ¹H NMR spectrum of compound (S, S_P)-**3b** (DMSO- d_6 , 25 °C, 500 MHz)

Figure S7. ¹H NMR spectrum of compound (*S*,*R*_P)-3b (DMSO-*d*₆, 25 °C, 500 MHz)

Figure S9. ¹H NMR spectrum of compound (S,S_P)-3c (DMSO-*d*₆, 25 °C, 500 MHz)

Figure S11. ¹H NMR spectrum of compound (*S*,*R*_P)-3c (DMSO-*d*₆, 25 °C, 500 MHz)

Figure S12. ¹³C NMR spectrum of compound (*S*,*R*_P)-3c (DMSO-*d*₆, 25 °C, 125 MHz)

Figure S13. ¹H NMR spectrum of compound (S,S_P)-3d (DMSO-*d*₆, 25 °C, 500 MHz)

S16

Figure S14. ¹³C NMR spectrum of compound (*S*,*S*_P)-3d (DMSO-*d*₆, 25 °C, 125 MHz)

Figure S15. ¹H NMR spectrum of compound (*S*,*R*_P)-3d (DMSO-*d*₆, 25 °C, 500 MHz)

Figure S17. ¹H NMR spectrum of compound (S, S_P)-**3e** (DMSO- d_6 , 25 °C, 500 MHz)

S18

Figure S19. ¹H NMR spectrum of compound (S, R_P)-**3e** (DMSO- d_6 , 25 °C, 500 MHz)

S19

Figure S21. ¹H NMR spectrum of compound (*S*,*S*_P)-**3f** (DMSO-*d*₆, 25 °C, 500 MHz)

S20

Figure S23. ¹H NMR spectrum of compound (S, R_P)-**3f** (DMSO- d_6 , 25 °C, 500 MHz)

3. Crystallographic Data and Optical Microscopy

X-Ray Diffraction Study of Compounds 3a-f was performed on an Xcalibur-3 X-ray diffractometer with a CCD detector according to the standard procedure (CuKa radiation, graphite monochromator, ω -scanning). Single crystals of compounds **3a-f** were obtained by spontaneous crystallization from water-methanol or benzene-acetone mixtures. An empirical absorption correction was applied. The structures were solved by direct method in the SHELXS program and refined by full-matrix least-squares on F² in the SHELXL program.^{S6} All non-hydrogen atoms were refined in anisotropic approximation (isotropically for hydrogen atoms). The hydrogen atom positions were partially solved and refined independently, and partially included in the refinement according to the "rider" model with dependent thermal parameters. The general crystal data and results of the refinements are presented in Tables S1 and S2. The X-ray structural analysis data were deposited with the Cambridge Crystallographic Data Centre (CCDC Nos. 661110 [(R,R_P)-3a], 1839003 [(S,R_P)-3a], 1839004 [(S,R_P)-**3b**], 1839005 [(S,R_P)-**3d**], 1839006 [(S,S_P)-**3b**], 1839007 [(S,S_P)-**3c**], 1839008 [(S,S_P)-**3d**], 1839009 [(S,S_P)-**3e**], and 1839010 [(S,S_P)-**3f**]). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

Molecular structures of the selected compounds are shown in Figure 25.

We visualized crystals of compounds **3a-f** by an Olympus BX-61 optical microscope (Japan) using reflected light mode with objective 5X.

Figure 25. Structures of compounds (a) (S,R_P) -3a, (b) (S,R_P) -3b, (c) (S,R_P) -3d, (d) (S,S_P) -3b, (e) (S,S_P) -3c, (f) (S,S_P) -3d, and (g) (S,R_P) -3e (thermal ellipsoids of 50% probability).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		(<i>S</i> , <i>R</i> _P)- 3a	(<i>S</i> , <i>S</i> _P)- 3b	(<i>S</i> , <i>S</i> _P)- 3C	(<i>S</i> , <i>S</i> _P)- 3d	(<i>S</i> , <i>R</i> _P)- 3d
$\begin{array}{c} \mbox{crystal lization} \\ \mbox{Crystal size, mm} \\ \mbox{Space group} \\ \mbox{Space group} \\ \mbox{Empirical formula} \\ \mbox{Formula weight} \\ \mbox{Unit cell dimensions} \\ \mbox{a, A} \\ \mbox{A}$ \\ \mbox{M}$ \\ \mbox{A}$ \\ \mbox{a, A} \\ \mbox{M}$ \\ \mbox{M}$ \\ \mbox{A}$ \\ \mbox{a, O} \\ \mbox{a, O} \\ \mbox{M}$ \\ \mbox{M}$ \\ \mbox{A}$ \\ $	Solvent for	C ₆ H ₁₄ –Me ₂ CO	MeOH-H ₂ O 1:3	MeOH-H ₂ O 5:1	MeOH-H ₂ O 4:1	MeOH
$ \begin{array}{c} \hline Crystal size, mm \\ Space group \\ Empirical formula \\ Formula weight \\ Unit cell dimensions \\ a, Å \\ b, Å \\ b, Å \\ c nd \\ b, Å \\ c nd \\ c nd$	crystallization	85:15				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crystal size, mm	0.25×0.20×0.15	0.48×0.22×0.04	0.41×0.27×0.04	0.40×0.30×0.20	0.40×0.30×0.2
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		m	m	m	5	0
Empirical formula $C_{15}H_{34}B_{10}N_2O_4$ $C_{19}H_{34}B_{10}N_2O_4$ $C_{16}H_{36}B_{10}N_2O_4$ 428.57 Unit cell dimensions $10.325(10)$ $12.565(11)$ $11.1118(7)$ $10.388(11)$ $10.440(4)$ $9.605(5)$ $10.532(10)$ $13.592(8)$ $\alpha, ^{\circ}$ 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 $\beta, ^{\circ}$ 90.00 90.00 90.00 90.00 90.00 90.00 90.00 $\gamma, ^{\circ}$ 90.00 90.00 90.00 90.00 90.00 90.00 $\gamma, ^{\circ}$ 90.00 90.00 90.00 90.00 90.00 $\gamma, ^{\circ}$ 90.00 90.00 90.00 90.00 90.00 $\gamma, ^{\circ}$ 109.8 1.139 1.084 1.122 1.071	Space group					
Formula weight Unit cell dimensions a, Å414.54462.58428.57428.57428.57428.57Unit cell dimensions a, Å10.325(10)12.565(11)11.118(7)10.388(11)10.440(4)b, Å9.558(6)17.879(6)9.389(4)9.372(10)9.605(5)c, Å12.703(8)13.048(5)13.347(7)13.622(10)13.592(8)a, °90.0090.0090.0090.0090.00g, °90.73(7)112.99(6)109.56(5)107.01(8)102.89(4)Y, °90.0090.0090.0090.0090.0090.00Volume, Å ³ ; Z1253.5(16); 22698(3); 41313.0(12); 21268(2); 21328.7(12); 2D _{calc} , g/cm ³ 1.0981.1391.0841.1221.071Absorption0.5340.5500.5240.5420.518coefficient µ, mm ⁻¹ 76456456456F (000)4409763.68 to 67.74°3.51 to 65.80°3.39 to 67.12°3.34 to 65.68°O range for data3.48 to 65.95 °3.68 to 67.74°3.51 to 65.80°3.39 to 67.12°3.34 to 65.68°Collection-12 < h < 12, -14 < h < 13, -12 < h < 13, -12 < h < 11, -12 < h < 12, -10 < k < 11, -15 < < 15 < <15 < <15 < <14 < <16 < -15 < <16 < <15 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 < <16 <	Empirical formula	$C_{15}H_{34}B_{10}N_2O_4$	$C_{19}H_{34}B_{10}N_2O_4$	$C_{16}H_{36}B_{10}N_2O_4$	$C_{16}H_{36}B_{10}N_2O_4$	C ₁₆ H ₃₆ B ₁₀ N ₂ O ₄
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Formula weight	414.54	462.58	428.57	428.57	428.57
a, A10.325(10)12.565(11)11.118(7)10.388(11)10.440(4)b, Å9.558(6)17.879(6)9.389(4)9.372(10)9.605(5)c, Å12.703(8)13.048(5)13.347(7)13.622(10)13.592(8)a, °90.0090.0090.0090.0090.00g, °90.73(7)112.99(6)109.56(5)107.01(8)102.89(4) $\gamma, °$ 90.0090.0090.0090.0090.00 $\gamma, °$ 90.0090.0090.0090.0090.00Volume, Å ³ ; Z1253.5(16); 22698(3); 41313.0(12); 21268(2); 21328.7(12); 2 $D_{calc}, g/cm^3$ 1.0981.1391.0841.1221.071Absorption0.5340.5500.5240.5420.518coefficient μ , mm ⁻¹ 76456456456F(000)440976456456456O range for data3.48 to 65.95°3.68 to 67.74°3.51 to 65.80°3.39 to 67.12°3.34 to 65.68°collection-12 < h < 12, -14 < h < 13, -12 < h < 11, -12 < h < 12, -10 < k < 10, -21 < k < 21, -11 < k < 9, -11 < k < 9, -10 < k < 11, -15 < < 12	Unit cell dimensions					
b, A 9.558(6) 17.879(6) 9.389(4) 9.372(10) 9.605(5) c, Å 12.703(8) 13.048(5) 13.347(7) 13.622(10) 13.592(8) α , $^{\circ}$ 90.00 90.00 90.00 90.00 90.00 90.00 β , $^{\circ}$ 90.73(7) 112.99(6) 109.56(5) 107.01(8) 102.89(4) γ , $^{\circ}$ 90.00 90.00 90.00 90.00 90.00 90.00 Volume, Å ³ ; Z 1253.5(16); 2 2698(3); 4 1313.0(12); 2 1268(2); 2 1328.7(12); 2 D _{calc} , g/cm ³ 1.098 1.139 1.084 1.122 1.071 Absorption 0.534 0.550 0.524 0.542 0.518 coefficient μ , mm ⁻¹ F(000) 440 976 456 456 456 456 Θ range for data collection 12 440 976 3.68 to 67.74 $^{\circ}$ 3.51 to 65.80 $^{\circ}$ 3.39 to 67.12 $^{\circ}$ 3.34 to 65.68 $^{\circ}$ collection 12 + 12 + 12 + 13 + -12 + 13 + -12 + 13 + -12 + 12 + -10 + 12 + -21 + 15 + 15 + -15 + 15 + -15 + 15 + -15 + 12 + -10 + 12 + -10 + 15 + 12 + 15 + -15 + 12 + 15 + -15 + 12 + 16 + 15 + 12 + 16 + 15 + 12 + 16 + 15 + 12 + 16 + 15 + 16 + 16 + 15 + 16 + 16 + 16	a, A	10.325(10)	12.565(11)	11.118(7)	10.388(11)	10.440(4)
c, A12.703(8)13.048(5)13.347(7)13.622(10)13.592(8) α , °90.0090.0090.0090.0090.0090.0090.00 β , °90.73(7)112.99(6)109.56(5)107.01(8)102.89(4) γ , °90.0090.0090.0090.0090.0090.00Volume, Å3; Z1253.5(16); 22698(3); 41313.0(12); 21268(2); 21328.7(12); 2 $D_{calc}, g/cm^3$ 1.0981.1391.0841.1221.071Absorption0.5340.5500.5240.5420.518coefficient μ , mm ⁻¹ 76456456456 $F(000)$ 4409763.68 to 67.74°3.51 to 65.80°3.39 to 67.12° $Older in the transmitting indices-12 < h < 12, -14 < h < 13, -12 < h < 13, -12 < h < 11, -12 < h < 12, -10 < k < 10, -15 < l < 15, -15 $	b, Å	9.558(6)	17.879(6)	9.389(4)	9.372(10)	9.605(5)
α , °90.0090.0090.0090.0090.0090.0090.00 β , °90.73(7)112.99(6)109.56(5)107.01(8)102.89(4) γ , °90.0090.0090.0090.0090.0090.00Volume, Å3; Z1253.5(16); 22698(3); 41313.0(12); 21268(2); 21328.7(12); 2 D_{calc} , g/cm³1.0981.1391.0841.1221.071Absorption0.5340.5500.5240.5420.518coefficient μ , mm ⁻¹ 76456456456 β range for data3.48 to 65.95°3.68 to 67.74°3.51 to 65.80°3.39 to 67.12°3.34 to 65.68°Collection-12 < h < 12, -14 < h < 13, -12 < h < 13, -11 < k < 9, -11 < k < 9, -10 < k < 11, -15 < l < 15	c, A	12.703(8)	13.048(5)	13.347(7)	13.622(10)	13.592(8)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	α, °	90.00	90.00	90.00	90.00	90.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β, °	90.73(7)	112.99(6)	109.56(5)	107.01(8)	102.89(4)
Volume, $Å^3$; Z1253.5(16); 22698(3); 41313.0(12); 21268(2); 21328.7(12); 2 D_{calc} , g/cm ³ 1.0981.1391.0841.1221.071Absorption0.5340.5500.5240.5420.518coefficient μ , mm ⁻¹ 440976456456456 Θ range for data3.48 to 65.95°3.68 to 67.74°3.51 to 65.80°3.39 to 67.12°3.34 to 65.68°collection-12 < h < 12, -10 < k < 10, -15 < l < 15	γ, °	90.00	90.00	90.00	90.00	90.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Volume, Å ³ ; Z	1253.5(16); 2	2698(3); 4	1313.0(12); 2	1268(2); 2	1328.7(12); 2
Absorption coefficient μ , mm ⁻¹ 0.5340.5500.5240.5420.518F(000)440976456456456 Θ range for data collection3.48 to 65.95°3.68 to 67.74°3.51 to 65.80°3.39 to 67.12°3.34 to 65.68°Limiting indices $-12 < h < 12$, $-10 < k < 10$, $-15 < l < 12$ $-14 < h < 13$, $-15 < l < 15$ $-12 < h < 13$, $-15 < l < 15$ $-12 < h < 11$, $-15 < l < 15$ $-12 < h < 11$, $-15 < l < 15$ $-12 < h < 11$, $-15 < l < 15$ $-12 < h < 11$, $-15 < l < 15$ Reflections collected1107025355102091653116411	$D_{calc}, g/cm^3$	1.098	1.139	1.084	1.122	1.071
$\begin{array}{ccc} \mbox{coefficient } \mu, \mbox{ mm}^{-1} \\ F(000) & 440 & 976 & 456 & 456 & 456 \\ \Theta \mbox{ range for data } & 3.48 \mbox{ to } 65.95^{\circ} & 3.68 \mbox{ to } 67.74^{\circ} & 3.51 \mbox{ to } 65.80^{\circ} & 3.39 \mbox{ to } 67.12^{\circ} & 3.34 \mbox{ to } 65.68^{\circ} & -12 \ < h \ < 12 \ < h \ < 12 \ , \\ -10 \ < k \ < 10 \ , \\ -15 \ < l \ < 12 \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -10 \ < p \ , \\ -15 \ < l \ < 15 \ , \\ -10 \ < p \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -10 \ < p \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -15 \ < l \ < 15 \ , \\ -16 \ < 11 \ , \\ -15 \ < l \ < 16 \ , \\ -16 \ < 11 \ , \\ -15 \ < l \ < 16 \ , \\ -16 \ < 11 \ , \\ -16 \ < 16 \ , \\ -16 \ < 11 \ , \\ -16 \ < 16 \ , \\ -16 \ < 11 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ < 16 \ , \\ -16 \ , \\ $	Absorption	0.534	0.550	0.524	0.542	0.518
F(000)440976456456456 Θ range for data collection 3.48 to 65.95° 3.68 to 67.74° 3.51 to 65.80° 3.39 to 67.12° 3.34 to 65.68° Limiting indices $-12 < h < 12$, $-10 < k < 10$, $-15 < l < 12$ $-14 < h < 13$, $-12 < k < 21$, 	coefficient μ , mm ⁻¹					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F(000)	440	976	456	456	456
collection $-12 < h < 12$, $-10 < k < 10$, $-15 < l < 12$ $-14 < h < 13$, $-12 < h < 11$, $-12 < h < 12$, $-10 < k < 11$, $-10 < k < 11$, $-15 < l < 15$ $-15 < l < 15$ $-15 < l < 15$ $-10 < 25355$ $-12 < h < 11$, $-11 < k < 9$, $-11 < k < 9$, $-14 < l < 16$ $-15 < l < 16$	Θ range for data	3.48 to 65.95 °	3.68 to 67.74°	3.51 to 65.80°	3.39 to 67.12°	3.34 to 65.68°
Limiting indices $-12 < h < 12$, $-10 < k < 10$, $-15 < l < 12$ $-14 < h < 13$, $-21 < k < 21$, $-11 < k < 9$, $-10 < k < 11$, $-15 < l < 15$ $-15 < l < 15$ $-16 < 115$ $-12 < h < 11$, $-11 < k < 9$, $-14 < l < 16$ $-15 < l < 16$	collection					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Limiting indices	-12 < h < 12,	–14 < h < 13,	–12 < h < 13,	–12 < h < 11,	–12 < h < 12,
-15 < l < 12 -15 < l < 15 -15 < l < 15 -14 < l < 16 -15 < l < 16 Reflections collected 11070 25355 10209 16531 16411	J	-10 < k < 10,	–21 < k < 21,	−11 < k < 9,	−11 < k < 9,	−10 < k < 11,
Reflections collected 11070 25355 10209 16531 16411		-15 < l < 12	–15 < l < 15	–15 < l < 15	–14 < l < 16	–15 < l < 16
	Reflections collected	11070	25355	10209	16531	16411
Independent 2208 4870 2354 3928 2440 (R _{int} =	Independent	2208	4870	2354	3928	2440 (R _{int} =
reflections $ (R_{int} = 0.0982)$ $ (R_{int} = 0.0776)$ $ (R_{int} = 0.0648)$ $ (R_{int} = 0.0605)$ $ 0.0978)$	reflections	$(R_{int} = 0.0982)$	$(R_{int} = 0.0776)$	(R _{int} = 0.0648)	(R _{int} = 0.0605)	0.0978)
Completeness (to θ) 94.8% (65.95°) 96.3% (67.74°) 96.9% (65.80°) 99.1% (67.12°) 99.7%	Completeness (to θ)	94.8% (65.95°)	96.3 % (67.74°)	96.9 % (65.80°)	99.1 % (67.12°)	99.7 %
(65.68°)						(65.68°)
Data / restraints / 2208 / 1 / 86 4870 / 121 / 720 2354 / 31 / 362 3928 / 1 / 338 2440 / 1 / 345	Data / restraints /	2208 / 1 / 86	4870 / 121 / 720	2354 / 31 / 362	3928 / 1 / 338	2440 / 1 / 345
parameters	parameters					
Goodness-of-fit on 1.005 1.003 1.002 1.003 1.001	Goodness-of-fit on	1.005	1.003	1.002	1.003	1.001
F^2	F^2					
Final R indices $R_1 = 0.0512$, $R_1 = 0.0583$, $R_1 = 0.0402$, $R_1 = 0.0529$,	Final R indices		R ₁ = 0.0512,	$R_1 = 0.0583,$	$R_1 = 0.0402$,	$R_1 = 0.0529$,
$[I > 2\sigma(I)] \qquad \qquad wR_2 = 0.1033 \qquad wR_2 = 0.1254 \qquad wR_2 = 0.0990 \qquad wR_2 = 0.1020$	$[l > 2\sigma(l)]$		$wR_2 = 0.1033$	$wR_2 = 0.1254$	$wR_2 = 0.0990$	$wR_2 = 0.1020$
R indices (all data) $R_1 = 0.1223$, $R_1 = 0.0979$, $R_1 = 0.0995$, $R_1 = 0.0464$, $R_1 = 0.0879$,	R indices (all data)	R ₁ = 0.1223,	$R_1 = 0.0979$,	$R_1 = 0.0995$,	$R_1 = 0.0464$,	$R_1 = 0.0879$,
$wR_2 = 0.1196$ $wR_2 = 0.1117$ $wR_2 = 0.1345$ $wR_2 = 0.1008$ $wR_2 = 0.1064$		wR ₂ = 0.1196	$wR_2 = 0.1117$	$wR_2 = 0.1345$	$wR_2 = 0.1008$	$wR_2 = 0.1064$
Absolute structure 0 0 0.22(19) 0	Absolute structure	0	0	0	0.22(19)	0
parameter	parameter					
Largest diff. peak 0.182 / -0.190 0.126 / -0.169 0.184 / -0.200 0.135 / -0.138 0.141 / -0.225	Largest diff. peak	0.182 / -0.190	0.126 / -0.169	0.184 / -0.200	0.135 / -0.138	0.141 / -0.225
and hole, ēÅ ⁻³	and hole, ēÅ ⁻³					

 Table S1. Crystallographic parameters of single crystals of monoclinic system

	(<i>S</i> , <i>R</i> _P)- 3b	(<i>S</i> , <i>S</i> _P)- 3e	(<i>S</i> , <i>S</i> _P)- 3f
Solvent for crystallization	MeOH–H ₂ O 1:3	MeOH–H ₂ O 20:1	MeOH–H ₂ O 6:1
Crystal size, mm	0.48×0.39×0.27	0.25×0.20×0.15	0.28×0.13×0.04
Space group	P212121	P212121	P22 ₁ 2 ₁
Empirical formula	C ₂₀ H ₃₈ B ₁₀ N ₂ O ₅	C ₁₅ H ₃₂ B ₁₀ N ₂ O ₄	C ₁₈ H ₃₂ B ₁₀ N ₂ O ₄
Formula weight	494.62	412.53	448.71
Unit cell dimensions			
<i>a</i> , Å	9.797(5)	9.994(6)	7.376(3)
b, Å	10.754(4)	10.816(4)	11.388(3)
<i>c</i> , Å	27.432(13)	21.367(15)	31.773(17)
α, °	90	90.00	90
β, ^o	90	90.00	90
γ, [°]	90	90.00	90
Volume, Å ³ ; Z	2890(2); 4	2310(2); 4	2669(2); 4
$D_{\text{calc}}, \text{ g/cm}^3$	1.137	1.186	1.1162
Absorption coefficient μ , mm ⁻¹	0.568	0.580	0.542
F(000)	1048	872	943.8
Θ range for data collection	3.22 to 65.43°	4.14 to 66.37°	2.78 to 68.14
Limiting indices	–11 < h < 11,	–11 < h < 11,	–8 ≤ h ≤ 7,
	−11 < k < 12,	−10 < k < 12,	–13 ≤ k ≤ 12,
	-32 < l < 31	–25 < l < 25	–30 ≤ l ≤ 38
Reflections collected	22714	17713	10617
Independent reflections	4884	3937	2637
	$(R_{\rm int}=0.0515)$	$(R_{\rm int}=0.0662)$	$(R_{\rm int} = 0.0643)$
Completeness (to θ)	99.7 % (65.43°)	96.9 % (65.80°)	95.4 % (66.0°)
Data / restraints / parameters	4884 / 0 / 389	3937 / 0 / 324	2637/0/309
Goodness-of-fit on <i>F</i> ²	1.007	1.005	1.037
Final R indices $[I > 2\sigma(I)]$	R ₁ = 0.0428,	$R_1 = 0.0404,$	$R_1 = 0.0396,$
	$wR_2 = 0.0973$	$wR_2 = 0.0839$	$wR_2 = 0.0734$
R indices (all data)	R ₁ = 0.0469,	R ₁ = 0.0525,	$R_1 = 0.0895,$
	$wR_2 = 0.0987$	$wR_2 = 0.0857$	$wR_2 = 0.0775$
Absolute structure parameter	0.06(16)	-0.2(2)	0
Largest diff. peak and hole, $\bar{e} A^{-3}$	0.176 / -0.206	0.148 / -0.223	0.25 / -0.32

Table S2. Crystallographic parameters of single crystals of orthorhombic system

Table S3. Order of elemental lattice and parameters of intermolecular hydrogen bonds of single crystals of compounds 3a-d,f

	General view of the unit cell	Parameters of intermolecular hydrogen bonds					
Compound		Donor of	Acceptor of hydrogen bond (A)	Interatomic distances, Å			DHA angle,
		bond (D)		D–H	H…A	D…A	degrees
(<i>S</i> , <i>R</i> _P)- 3a		N2-H2A	O4 [-x, y-½, -z]	0.860	2.016	2.825	156.50
		N1-H1A	O5 [-x, y-½, -z]	0.860	2.035	2.878	166.22
(S S_)-3h	Jose Contraction	N1-H1A	O3A [-x, y+½, -z-1]	0.860	2.017	2.858	165.63
(3,3p) -3D		N2-H2B	O1A [-x-1, y+½, -z-1]	0.902	1.943	2.823	164.53
(<i>S</i> , <i>R</i> _P)- 3b		N2-H2	O1S [-x, y+½, -z-½]	0.843	2.037	2.873	171.10
		N1-H1A	O1 [-x, y-½, -z-½]	0.814	2.134	2.921	162.66
(<i>S</i> , <i>S</i> _P)- 3c		N3-H1A	O3 [-x+2, y-½, -z+1]	0.870	2.075	2.908	159.,92
		N2-H6A	O1 [-x+2, y-½, -z+1]	0.909	1.954	2.844	166.15

	The state	N2-H2A	O1 [-x+2, y-½, -z+2]	0.796	2.148	2.916	162.27
(<i>R</i> , S _P)- 3c		N1-H1C	O2 [-x+2, y-½, -z+2]	0.712	2.193	2.871	159.70
		N1-H1A	O2 [-x+2, y+½, -z]	0.854	2.060	2.871	158.22
(S,S _P)- 3d (S,S _P)- 3f		N2-H2A	O3 [-x+2, y+½, -z]	0.970	1.901	2.867	172.84
		N7-H7	O5 [x–1, y, z]	0.860	2.105	2.930	160.5
	THE THE	N1-H1	O3 [x+1, y, z]	0.859	2.014	2.843	161.7

4. Piezoelectric Measurements

Piezoelectric characterizations were performed by Piezoresponse Force Microscopy (PFM) using a MFP-3D scanning probe microscope (Asylum Research, USA). We placed studied crystals on conductive Cu tape used as a bottom electrode. Conductive tips covered by Ti/Pt with resonant frequency 60-90 kHz and force constant 1.2-5.5 N/m were used as top point electrode. To obtain the voltage dependence of crystal piezoelectric response we discretely increased the modulating voltage on a tip. Voltage dependencies of piezoelectric response of some investigated crystals are shown in Figure S26.

Figure S26. Voltage dependencies of piezoelectric response of (a) (S, S_P) -**3a** crystals, (b) (S, S_P) -**3b** crystals, (c) (S, S_P) -**3d** crystals, and (d) (S, S_P) -**3f** crystals.

5. References

(S1) V. P. Krasnov, G. L. Levit, I. M. Bukrina, A. M. Demin, O. N. Chupakhin, J. U. Yoo, *Tetrahedron: Asymmetry*, 2002, **13**, 1911.

(S2) S. Seiwert, L. Beigelman, B. Buckman, V. Serebryany, A. D. Stoycheva, WO Patent Appl. 2010/045266 A1, 2010; Chem. Abstr. **2010**, *152*, 501673.

(S3) E. Taschner, A. Chimiak, B. Bator, T. Sokołowska, *Justus Liebigs Ann. Chem.*, 1961, **646**, 134.

(S4) V. A. Ol'shevskaya, R. Ayuob, Z. G. Brechko, P. V. Petrovskii, E. G. Kononova, G. L. Levit, V. P. Krasnov, V. N. Charushin, O. N. Chupakhin, V. N. Kalinin, *J. Organomet. Chem.*, 2005, **690**, 2761.

(S5) W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals, 6th ed.*, Butterworth Heinemann, USA, 2009.

(S6) G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112.