Electronic Supplementary Information

Enhanced sensing performance of carboxyl graphene-ionic liquid attached ionic polymer-metal nanocomposites based polymer strain sensors

Varij Panwara* , Anoop Menonb

aDepartment of Electronics and Communication Engineering, Graphic Era Deemed to be University, Dehradun
bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology
Oryong-Dong, Buk-Gu, Gwangju 61005, South Korea
*E-mail: varijpanwarcertain@gmail.com
Fig. S1 TEM image of COG

Fig. S1 shows the TEM images of COG sheets.
The load with strain of the Nafion membrane is shown in Fig. S2 (a) and Tabulated in Table S1. The current density of the Nafion based IPMNC is shown in Fig. S2 (b).

Table S1. Mechanical properties of Nafion membrane.

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Young’s modulus (MPa)</th>
<th>Tensile strength (MPa)</th>
<th>Elongation at break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafion</td>
<td>74</td>
<td>17.3</td>
<td>135</td>
</tr>
</tbody>
</table>
The sensing current of the IBM-1/C0G (99.95/0.05) (IL) bending strain of 0.009 is shown in Fig. S3 (a). The sensing current of 1.9 A/cm2 is obtained with bending strain. The electrical current of IBM-1/C0G (99.95/0.05) (IL) is obtained with voltage and shown in Fig. S3 (b).

Fig. S3 (a) Sensing current of IBM/0.05 based IPMNC with bending strain (b) Electrical current of IBM/0.05 based IPMNC with voltage.