Supporting Information for

Pyran-annulated perylene diimides derivatives as non-fullerene acceptors for high performance organic solar cells

Gang Lia, Yu Zhanga, Tao Liub, Shuaihua Wanga, Dandan Lia, Jiewei Lic, Fengting Lid, Lian-Ming Yangd, Zhenghui Luoe, Chuluo Yange, He Yanab, Pin Haoa, Qiaoyan Shanga and Bo Tanga

a College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.

b Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

c Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P.R. China

d Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

e Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China.

\dagger These authors contributed equally to this work.

Contents

1. Solar cell fabrication and characterization

2. Space charge-limited current (SCLC) device fabrication

3. Film and Device Characterization
4. Solid state UV−vis absorption spectra of TPA-PDI$_2$ and TPA-PDI$_3$

5. Electrochemical Characterization of the TPA-PDI$_2$ and TPA-PDI$_3$

6. Computational Studies

7. Synthesis and characterization

8. Spectroscopic data

9. Reference

1. Solid state UV−vis absorption spectra of TPA-PDI$_2$ and TPA-PDI$_3$

![Normalized UV−vis absorption spectra of TPA-PDI$_2$ and TPA-PDI$_3$](image)

Figure S1. Normalized UV−vis absorption spectra of TPA-PDI$_2$ and TPA-PDI$_3$ in the film state.

2. Electrochemical Characterization of the TPA-PDI$_2$ and TPA-PDI$_3$

Electrochemical measurements of targeted two as-synthesized PDIs compounds thin films were performed under nitrogen in deoxygenated 0.1 M solutions of tetra-n-butylammonium hexafluorophosphate in dry acetonitrile using a CHI 660C electrochemical workstation, a glassy carbon working electrode, a platinum wire auxiliary electrode, and an Ag/AgCl reference electrode. Cyclic voltammograms were recorded at a scan rate of 50 mV s$^{-1}$. The lowest unoccupied molecular orbital (LUMO)
levels were estimated based on the onset reduction potential (E_{red}), and the reduction potential was calibrated using ferrocene ($E_{\text{Fc/Fc}^+}$) as a reference ($E_{\text{red}} = -[E_{\text{measured}} - E_{\text{Fc/Fc}^+} + 4.8] \text{ eV}$). ferrocene as an internal standard. Under the same condition, the onset oxidation potential ($E_{1/2}^{\text{ox}}$) of ferrocene was measured to be 0.432 V versus Ag/Ag$^+$.

Table S1. The photophysical and electrochemical properties of TPA-PDI$_2$ and TPA-PDI$_3$.

<table>
<thead>
<tr>
<th>Samples</th>
<th>λ_{max}^a (nm)</th>
<th>ε^a (mol$^{-1}$ cm$^{-1}$)</th>
<th>λ_{onset}^a (nm)</th>
<th>E_{HOMO}^b (eV)</th>
<th>E_{LUMO}^c (eV)</th>
<th>E_{opt}^d (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA-PDI$_2$</td>
<td>553</td>
<td>62168.3</td>
<td>733</td>
<td>-5.52</td>
<td>-3.83</td>
<td>1.69</td>
</tr>
<tr>
<td>TPA-PDI$_3$</td>
<td>553</td>
<td>90880.7</td>
<td>700</td>
<td>-5.55</td>
<td>-3.78</td>
<td>1.77</td>
</tr>
</tbody>
</table>

aIn dichloromethane solution; bE$_{\text{HOMO}} = E_{\text{LUMO}} - E_{\text{opt}}^g$; cUsing the CV method, $E_{\text{red}} = -[E_{\text{measured}} - E_{\text{Fc/Fc}^+} + 4.8] \text{ eV}$; dCalculated from the empirical formula: $E_{\text{opt}}^g = 1240/\lambda_{\text{onset}}$.

3. Computational Studies

![Wave functions of compounds TPA-PDI$_2$ and TPA-PDI$_3$.](image)

Figure S2. Wave functions of compounds TPA-PDI$_2$ and TPA-PDI$_3$.

Table S2. The calculated data of TPA-PDI$_2$ and TPA-PDI$_3$ (the HOMO, LUMO and band gap)

<table>
<thead>
<tr>
<th></th>
<th>HOMO</th>
<th>LUMO</th>
<th>$E_{\text{g}}^{\text{cal}}$</th>
</tr>
</thead>
</table>

3 / 17
Table S3. Device data of OSCs based on the PBDB-T: TPA-PDI$_2$ and PBDB-T: TPA-PDI$_3$ blends measured under the illumination of AM 1.5 G, 100 mW cm$^{-2}$.

<table>
<thead>
<tr>
<th>Samples</th>
<th>V_{oc} (V)</th>
<th>I_{sc} (mA/cm2)</th>
<th>FF</th>
<th>PCE (%)</th>
<th>PCE$_{max}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPA-PDI$_2$</td>
<td>0.865±0.005</td>
<td>3.837 ± 0.201</td>
<td>0.368±0.004</td>
<td>1.221±0.132</td>
<td>1.314</td>
</tr>
<tr>
<td>TPA-PDI$_3$</td>
<td>0.910±0.005</td>
<td>10.276 ± 0.213</td>
<td>0.624±0.005</td>
<td>5.598±0.184</td>
<td>5.840</td>
</tr>
</tbody>
</table>

4. Space charge-limited current (SCLC) device fabrication

The structure of electron-only devices is ITO/ZnO/active layers/ZrAcAc/Al and the structure of hole-only devices is ITO/V$_2$O$_5$/active layers/V$_2$O$_5$/Al. The fabrication conditions of the active layer films are same with those for the solar cells. The charge mobilities are generally described by the Mott-Gurney equation:

$$ J = \frac{9}{8} \varepsilon \varepsilon_0 \mu \frac{V^2}{L} $$

where J is the current density, ε_0 is the permittivity of free space (8.85×10$^{-14}$ F/cm), ε_r is the dielectric constant of used materials, μ is the charge mobility, V is the applied voltage and L is the active layer thickness. The ε_r parameter is assumed to be 3, which is a typical value for organic materials. In organic materials, charge mobility is usually field dependent and can be described by the disorder formalism, typically varying with electric field, $E=V/L$, according to the equation:

$$ \mu = \mu_0 \exp[0.89 \gamma \sqrt{\frac{V}{L}}] $$
where μ_0 is the charge mobility at zero electric field and γ is a constant. Then, the Mott-Gurney equation can be described by:

$$J = \frac{9}{8} e \varepsilon_0 \mu_0 \frac{V^2}{L^3} \exp \left[0.89 \frac{V}{\sqrt{L}} \right]$$

![Image](image-url)

Figure S3. Dark current density-voltage characteristics for (a) hole-only and (b) electron-only devices with optimized PBDB-T:TPA-PDI$_2$ and PBDB-T:TPA-PDI$_3$ BHJ films.

Table S4. Hole and electron mobility of TPA-PDI$_2$, TPA-PDI$_3$, PBDB-T:TPA-PDI$_2$ and PBDB-T:TPA-PDI$_3$ BHJ films.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Hole mobility $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$</th>
<th>electron mobility $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBDB-T:TPA-PDI$_2$</td>
<td>0.000565</td>
<td>0.000223</td>
</tr>
<tr>
<td>PBDB-T:TPA-PDI$_3$</td>
<td>0.000784</td>
<td>0.000385</td>
</tr>
<tr>
<td>TPA-PDI$_2$</td>
<td>0.000598</td>
<td>0.000598</td>
</tr>
<tr>
<td>TPA-PDI$_3$</td>
<td>0.000634</td>
<td>0.000634</td>
</tr>
<tr>
<td>PBDB-T</td>
<td>0.001275</td>
<td>--</td>
</tr>
</tbody>
</table>

5. Film and Device Characterization

The ultraviolet-visible (UV-Vis) absorption spectra of neat and blend films were obtained using a Shimadzu UV-3101 PC spectrometer. The current-voltage (I-V) curves of all OSCs were measured in a high-purity nitrogen-filled glove box using a
Keithley 2400 source meter. AM 1.5G irradiation at 100 mW/cm² provided by An XES-40S2 (SAN-EI Electric Co., Ltd.) solar simulator (AAA grade, 70x70 mm² photobeam size), which was calibrated by standard silicon solar cells (purchased from Zolix INSTRUMENTS CO. LTD). The external quantum efficiency (EQE) spectra of solar cells were measured in air conditions by a Zolix Solar Cell Scan 100. The morphology of the active layers was investigated by atomic force microscopy (AFM) using a Dimension Icon AFM (Bruker) in a tapping mode.

Figure S4. J_{ph} versus V_{eff} curves of PBDB-T:TPA-PDI$_2$ and PBDB-T:TPA-PDI$_3$.

Table S5. Key photovoltaic parameters calculated from the J_{ph}-V_{eff} curves of PBDB-T:TPA-PDI$_2$ and PBDB-T:TPA-PDI$_3$ based devices after annealing.

<table>
<thead>
<tr>
<th></th>
<th>J_{sat} (mA.cm$^{-2}$)</th>
<th>J_{ph} (mA.cm$^{-2}$)</th>
<th>J_{ph} (mA.cm$^{-2}$)</th>
<th>$J_{\text{ph}} / J_{\text{sat}}$ (%)</th>
<th>$J_{\text{ph}} / J_{\text{sat}}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDBT-T: TPA-PDI$_2$</td>
<td>4.732</td>
<td>4.059</td>
<td>2.527</td>
<td>85.8</td>
<td>53.4</td>
</tr>
<tr>
<td>PDBT-T: TPA-PDI$_3$</td>
<td>10.875</td>
<td>10.270</td>
<td>8.702</td>
<td>94.4</td>
<td>80.0</td>
</tr>
</tbody>
</table>
6. Synthesis and Characterization

Bis(4-bromophenyl)phenylamine (S1)

Under the condition of the dark, a solution of N-bromosuccinimide (7.26 g, 40.8 mmol) in dry DMF (80 mL) cooled to 0 °C, then a solution of triphenylamine (5.00 g, 20.35 mmol) in dry DMF (60 mL) was added dropwise and stirred at 0°C for 4h. the mixture was poured into water (200 mL) and extracted with CH$_2$Cl$_2$. The extracted phase was dried with Na$_2$SO$_4$ and evaporated under reduced pressure, which was purified through silica gel column chromatography with hexane-dichloromethane (60:1) as eluent to give dibromotriphenylamine S1 as a white solid (6.75 g, 82.7%).1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.33 (d, 4H), 7.26 (dd, 2H), 7.06 (m, 3H), 6.23 (d, 4H).
N, N'-bis-[4-(trimethylsilylethynyl)phenyl]phenylamine (S2)
To a flask were added S1 (20.1 g, 50 mmol), trimethylsilylacetylene (17.64 mL, 125 mmol), Pd(PPh₃)₄ (5.7 g, 5 mmol), CuI (952 mg, 5 mmol), diisopropylamine (50 mL) and dry toluene (100 mL), and the mixture was stirred under nitrogen at 80 °C for overnight, then cooled to room temperature. After the completion of the reaction, the reaction mixture was diluted with DCM (150 mL), filtered over Celite, and concentrated under reduced pressure, which was purified silica gel column chromatography with gradient elution of hexane : ethyl acetate (95:5) to give compound S2 as a yellow oil (16.4 g, 75% yield).¹H NMR (400 MHz, CDCl₃, ppm): δ 0.23 (s, 18H), 6.95 (d, 4H), 7.06 (d, 2H); 7.26 (d, 2H), 7.32 (d, 6H).

N, N’-Bis-(4-ethynlyphenyl)phenylamine (TPA-2EY)
Potassium carbonate (3.2 g, 23.2 mmol) was added into a DCM/MeOH (30 mL/30 mL) solution of S2 (1.0 g, 2.32 mmol), and then the mixture was stirred at room temperature for 6 h. The mixture solution was poured into water (50 mL) and then extracted by CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and the solvent was evaporated under vacuum. The crude product was purified by flash column chromatography on silica gel with n-hexane/dichloromethane as eluent to give TPA-2EY as a pale yellow solid (0.67 g, 90% yield).¹H NMR (400 MHz, CDCl₃, ppm): δ 3.04 (s, 2H), 6.99 (d, 4H), 7.09 (d, 2H), 7.29 (t, 1H), 7.35 (d, 6H).
Tris(4-bromophenyl)amine (S3)

Under the condition of the dark, to a solution of triphenylamine (4.01 g, 16.4 mmol) in DMF (80 mL) in an ice-bath was added dropwise a solution of N-bromosuccinimide (9.06 g, 50.9 mmol) in DMF (30 mL). After complete addition, the solution mixture was warmed up to room temperature. After stirring overnight, the reaction was quenched with ice-water, extracted with ethyl acetate, and then separated. The combined organic layers was washed with brine, dried over anhydrous sodium sulfate and evaporated in vacuum, followed by recrystallization from ethanol to afford a white solid of compound S3 (7.13 g, 90% yield). 1H NMR (400 MHz, CDCl$_3$, ppm): δ 7.35 (d, 2H), 6.92 (d, 2H).

Tris[4-(trimethylsilylethynyl)phenyl]phenylamine (S4)

To a flask were added S3 (2.41 g, 5 mmol), trimethylsilylacetylene (2.82 mL, 20 mmol), Pd(PPh$_3$)$_4$ (0.85g, 0.75 mmol), CuI (0.14 g, 0.75 mmol), diisopropylamine (10 mL) and dry toluene (20 mL) under argon protection, and the mixture was stirred under nitrogen at 80 °C for overnight. then cooled to room temperature. After the
completion of the reaction, concentrated under reduced pressure, which was purified silica gel column chromatography with gradient elution of hexane-ethyl acetate (20:1) to give compound S4 as a light yellow solid (2.51g, 94% yield).\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): δ 0.26 (s, 27H); 6.98 (d, 6H); 7.36 (d, 6H).

Tris(4-ethynylphenyl)amine (TPA-3EY)

Potassium carbonate (1.38 g, 10.00 mmol) was added into a CH\(_2\)Cl\(_2\) / MeOH (30 mL / 30 mL) solution of S4 (1.24 g, 2.32 mmol), and then the mixture was stirred at room temperature for 6 h. The mixture solution was poured into water (50 mL) and then extracted by CH\(_2\)Cl\(_2\) (50 mL × 2). The combined organic layers were dried over Na\(_2\)SO\(_4\) and the solvent was evaporated under vacuum. The crude product was purified by flash column chromatography on silica gel with n-hexane/dichloromethane (10:1) as eluent to give **TPA-3EY** as a yellow solid (0.66 g, yield 89 %). \(^1\)H NMR (400 MHz, CDCl\(_3\), ppm): δ 7.36 (d, 6H), 6.99 (d, 6H), 3.0 (s, 3H).
7. Spectroscopic data

Figure S5. 1H NMR spectrum of compound Py-PDI-Br.

Figure S6. 13C NMR spectrum of compound Py-PDI-Br.
Figure S7. HRMS profile of compound Py-PDI-Br.

Figure S8. 1H NMR spectrum of compound TPA-PDI$_2$.
Figure S9. 13C NMR spectrum of compound TPA-PDI$_2$.

Figure S10. 1H NMR spectrum of compound TPA-PDI$_3$.
Figure S11. 13C NMR spectrum of compound TPA-PDI$_3$.

Figure S12. HRMS profile of compound TPA-PDI$_2$.
Figure S13. HRMS profile of compound TPA-PDI$_3$.

Figure S14. FT-IR profile of compound TPA-PDI$_2$.
Figure S15. FT-IR profile of compound TPA-PDI$_3$.

Figure S16. Thermogravimetric analysis (TGA) graphs for compounds TPA-PDI$_2$ and TPA-PDI$_3$ in nitrogen atmosphere. Heating rate: 10 °C/min.
Figure S17. The molecular structures of PBDB-T, TPA-PDI$_2$ and TPA-PDI$_3$.

Reference