Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supplementary Information for

Bisubstituted-Biquinoline Cu(I) complexes: synthesis, mesomorphism and photophysical studies in solution and condensed states

C. Cretu, a A. A. Andelescu, a A. Candreva, b A. Crispini*, b E. I. Szerb* a and M. La Deda b

a Institute of Chemistry of Romanian Academy, 24 Mihai Viteazu Bvd., 300223, Timisoara, Romania

b MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy

Contents:

Figure S1: DSC trace of complex CuL2_ClO4
Figure S2: DSC trace of complex CuL2_BF4
Figure S3: DSC trace of complex CuL3_ClO4
Figure S4: DSC trace of complex CuL3_BF4
Figure S5: X-ray powder diffraction patterns of complex CuL2_BF4
Figure S6: X-ray powder diffraction patterns of complex CuL2_ClO4
Figure S7: Absorption of ligand L2
Figure S8: Absorption of ligand L3
Figure S9: Emission spectra of the ligands L2 and L3 in dichloromethane solution
Figure S10: Absorption spectrum of CuL2_ClO4 in dichloromethane solution
Figure S11: Absorption spectrum of CuL3_ClO4 in dichloromethane solution
Figure S12: Absorption spectrum of CuL3_BF4 in dichloromethane solution
Figure S13: Emission spectrum of CuL2_X in the solid state, at r.t.
Figure S14: Emission spectrum of CuL3_X in the solid state, at r.t.
Figure S1. First and second cycle DSC traces of complex CuL2_ClO4 obtained with a heating-cooling rate of 10°C/min.

Figure S2. First and second cycle DSC traces of complex CuL2_BF4 obtained with a heating-cooling rate of 10°C/min.
Figure S3. First and second cycle DSC traces of complex **CuL₃_ClO₄** obtained with a heating-cooling rate of 10°C/min.

Figure S4. First and second cycle DSC traces of complex **CuL₃_BF₄** obtained with a heating-cooling rate of 10°C/min.
Figure S5. X-ray powder diffraction patterns of complex CuL2_BF4 recorded on heating in the II cycle at 75 °C (red trace) and at 135 °C (black trace)

Figure S6: X-ray powder diffraction patterns of complex CuL2_CIO4 recorded on heating in the II cycle at r.t. (black trace), 57° (red trace), 70 °C (blue trace) and 130 °C (sky-blue trace)
Figure S7. Absorption spectrum of L2 in dichloromethane solution

Figure S8. Absorption spectrum of L3 in dichloromethane solution
Figure S9. Emission spectra of the ligands L2 and L3 in dichloromethane solution

Figure S10. Absorption spectrum of CuL2 ClO4 in dichloromethane solution
Figure S11. Absorption spectrum of CuL3_ClO4 in dichloromethane solution

Figure S12. Absorption spectrum of CuL3_BF4 in dichloromethane solution
Figure S13. Emission spectrum of CuL2_X from a solid sample at room temperature ($\lambda_{ex} = 570$ nm).

Figure S14. Emission spectrum of CuL3_X from a solid sample at room temperature ($\lambda_{ex} = 570$ nm).