Electronic Supplementary Information (ESI) for

Small Morphology Variations Effects on Plasmonic Nanoparticle Dimer Hotspots

Yu Huang,*,† Yun Chen,† Ling-Ling Wang,† and Emilie Ringe*,‡§

†School of Physics and Electronics, Hunan University, Changsha 410082, China
‡Department of Materials Sciences and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
§Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EK, UK

*E-mail: huangyu@hnu.edu.cn, er407@cam.ac.uk

Far-field extinction spectra

The calculated far-field extinction spectra of the bridged, creviced, faceted and roughened dimers are plotted in Fig. S1-S4. They are calculated by integrating the time-averaged extinction Poynting vectors S_{ext} (i.e. electromagnetic power flow) over an auxiliary surface A enclosing the dimer, respectively:1

$$S_{\text{ext}} = \frac{1}{2} \text{Re}\{E_{\text{inc}} \times H_{\text{sca}}^* + E_{\text{sca}} \times H_{\text{inc}}^*\}$$

(S1)

$$C_{\text{ext}} = -\iiint S_{\text{ext}} dA / |W_{\text{inc}}|$$

(S2)
where E_{inc}, E_{sca}, H_{inc} and H_{sca} are the incident and scattered electric and magnetic field respectively. C_{ext} is the extinction cross section, $|W_{\text{inc}}| = \frac{1}{2}ce_0\varepsilon_0E_0^2$ is the power flow per unit area of the incident plane wave, E_0 (set at 1 V/m here) is the modulus of E_{inc}, c is the velocity of light and ε_0 is the permittivity of vacuum.

Figure S1. FEM calculated far-field extinction spectra for the bridge dimers as b is increased from 2 to 15nm, corresponding to Fig. 1.
Figure S2. FEM calculated far-field extinction spectra for the creviced dimers as c is increased from 5 to 15nm, corresponding to Fig. 3.
Figure S3. FEM calculated far-field extinction spectra for the faceted dimers as f is increased from 2 to 15nm, corresponding to Fig. 5.
Figure S4. FEM calculated far-field extinction spectra for the roughened dimers as r is decreased from 30 to 12 nm, corresponding to Fig. 7.

Reference