Supporting information

Non-phosphors-doped fluorescent/phosphorescent hybrid white organic light-emitting diodes with a sandwich blue emitting layer simultaneously achieving superior device efficiency and color quality

Yanqin Miao$^{a,b, *}$, Kexiang Wanga, Long Gaoa, Hua Wanga,*, Furong Zhub,*, Bingshe Xua

aKey Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, and Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
E-mail: miaoyanqin@tyut.edu.cn (Yanqin Miao) and wanghua001@tyut.edu.cn (Hua Wang)

bDepartment of Physics, Institute of Advanced Materials, and Institute of Research and Continuing Education (Shenzhen), Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
E-mail: frzhu@hkbu.edu.hk (Furong Zhu)
Section S1

ITO glass substrates were scrubbed and sonicated consecutively with detergent water, deionized water, and acetone, dried in drying cabinet, and then exposed to a UV ozone environment for 10 min. After these processes, the cleaned ITO glass substrates were loaded in a vacuum chamber, a base pressure of $\leq 5 \times 10^{-4}$ Pa, for film deposition using thermal evaporation technology. The deposition rate and film thickness were monitored controlled by the calibrated crystal quartz sensors, e.g., the deposition rates of organic materials, MoO$_3$, LiF, and cathode Al were controlled at about 1 Å/s, 0.3 Å/s, 0.1 Å/s, and 3–6 Å/s, respectively. Organic films for PL measurements were fabricated with the same method as device fabrication. The EL spectra and CIE coordinates of all OLEDs were measured by a computer controlled PR-655 spectra scan spectrometer. The J-V-L characteristics, CE, and PE were recorded by a computer-controlled Keithley 2400 source integrated with a BM-70A luminance meter. The EQE was calculated from the J–V–L curve and spectra data.
Fig. S1 The normalized EL intensity of the reference devices R1–R3 at a voltage of 5 V.