Hybrid Organic-inorganic Lead Bromide Perovskite Supercrystals Self-Assembled with L-cysteine and Their Highly Luminescent Properties

Sangni Wanga, Liya Zhoua, Furong Huanga, Youling Xina, Peng Jina, Qiuxia Maa, Qi Panga*, Yibo Chenb*, Jin Zhong Zhangc

a School of Chemistry and Chemical Engineering Guangxi University/Guangxi Key Laboratory of Electrochemical Energy Materials, 100 University Road, Nanning 530004, China.
bSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
cDepartment of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.

*Corresponding author email: pqigx@163.com and chenyibo@gzhu.edu.cn

<table>
<thead>
<tr>
<th>Table of Content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table S1. Surface elemental stoichiometry data.</td>
<td>S2</td>
</tr>
<tr>
<td>Figure S1. Photographs of PNCs-Cys under room light and UV light.</td>
<td>S2</td>
</tr>
<tr>
<td>Figure S2. PL emission spectra of the PNCs-Cys-60 and PNCs-Cys-84; TRPL spectra of PNCs-Cys-84</td>
<td>S3</td>
</tr>
<tr>
<td>Figure S3. Absorption spectra and PL emission spectra of PNCs-Cys-60 prepared with different contents of L-Cys capping ligands.</td>
<td>S3</td>
</tr>
<tr>
<td>Figure S4. Transmission electron microscopy (TEM) images of PNCs-Cys-60 prepared with different content of L-cys capping ligands.</td>
<td>S4</td>
</tr>
<tr>
<td>Figure S5. PL emission spectra of PNCs-Ala and PNCs-Cys.</td>
<td>S4</td>
</tr>
<tr>
<td>Figure S6. PL intensity of PNCs-Ala-60 concentration on time in ethonal.</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S7. Emission spectra of PeLEDs.</td>
<td>S5</td>
</tr>
</tbody>
</table>
Table S1. Surface elemental stoichiometry for PNCs-Cys and bulk materials.

<table>
<thead>
<tr>
<th>sample</th>
<th>Br:Pb ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk</td>
<td>2.9</td>
</tr>
<tr>
<td>PNCs-Cys</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Figure S1. Photographs of PNCs-Cys prepared with different aging times under room light and UV light (365 nm) irradiation.
Figure S2. (a) PL spectra ($\lambda_{ex} = 395$ nm) of PNCs-Cys-60 and PNCs-Cys-84, (b) the TRPL spectra of PNCs-Cys-84 displayed on a logarithmic intensity scale ($\lambda_{ex} = 395$ nm).

Figure S3. UV-Vis (black line) and PL (red line) spectra ($\lambda_{ex} = 395$ nm) of PNCs-Cys-60 prepared with different contents of L-Cys capping ligands in toluene.
Figure S4. TEM image of PNCs-Cys-60 prepared with (a) 10 μL L-cys, (b) 20 μL L-cys, (c) 25 μL L-cys and (d) 30 μL L-cys. Inset: HRTEM image.

Figure S5. (a) PL spectra ($\lambda_{ex} = 395$ nm) of PNCs-Ala and PNCs-Cys, (b) Histogram of PL intensity for PNCs-Ala and PNCs-Cys.
Figure S6. The relative fluorescence intensity of 0.50 mg/mL PNCs-Ala-60 concentration on time in ethonal.

Figure S7. Emission spectra of PeLEDs based on aging time dependent PNCs-Cys.